Suppr超能文献

建立细胞分析系统以研究高危和低危黏膜及皮肤型人乳头瘤病毒的基因组复制。

Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses.

机构信息

Department of Biomedical Technology, Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.

出版信息

J Virol. 2011 Apr;85(7):3315-29. doi: 10.1128/JVI.01985-10. Epub 2011 Jan 19.

Abstract

We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA. Analysis of the HPV DNA status in these established cell lines showed that HPV genomes exist in these cells as stable extrachromosomal oligomers. When the cell lines were cultivated as confluent cultures, a 3- to 10-fold amplification of the HPV genomes per cell was induced. Two-dimensional (2D) agarose gel electrophoresis confirmed amplification of mono- and oligomeric HPV genomes in these confluent cell cultures. Amplification occurred as a result of the initiation of semiconservative two-dimensional replication from one active origin in the HPV oligomer. Our data suggest that the system described here might be a valuable, cost-effective, and efficient tool for use in HPV DNA replication studies, as well as for the design of cell-based assays to identify potential inhibitors of all stages of HPV genome replication.

摘要

我们发现,当通过电穿孔将循环化的高危型(16 型和 18 型)和低危型黏膜(6b 型和 11 型)和皮肤型(5 型和 8 型)人乳头瘤病毒(HPV)基因组递送至 U2OS 细胞中时,它们很容易复制。复制效率取决于输入 HPV DNA 的量,并且可以在没有选择的情况下在增殖细胞培养物中跟踪超过 3 周。将循环化的 HPV 基因组与线性 G418 抗性标记质粒共转染,允许亚克隆细胞系,在大多数情况下,这些细胞系携带多拷贝的 HPV episomal DNA。对这些建立的细胞系中的 HPV DNA 状态进行分析表明,HPV 基因组作为稳定的染色体外寡聚物存在于这些细胞中。当将细胞系作为汇合培养物进行培养时,每个细胞中的 HPV 基因组会被诱导扩增 3-10 倍。二维(2D)琼脂糖凝胶电泳证实了这些汇合细胞培养物中 HPV 单聚体和寡聚体基因组的扩增。扩增是由于 HPV 寡聚体中一个活性起点开始的半保守二维复制引起的。我们的数据表明,这里描述的系统可能是一种有价值、具有成本效益且高效的工具,可用于 HPV DNA 复制研究,以及用于设计基于细胞的测定法来鉴定 HPV 基因组复制所有阶段的潜在抑制剂。

相似文献

4
Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency.
mSphere. 2018 Dec 12;3(6):e00645-18. doi: 10.1128/mSphereDirect.00645-18.
7
Prediction of conserved microRNAs from skin and mucosal human papillomaviruses.
Arch Virol. 2011 Jul;156(7):1161-71. doi: 10.1007/s00705-011-0974-3. Epub 2011 Mar 26.
8
Human papillomaviruses of the mucosal type are present in some cases of extragenital Bowen's disease.
Br J Dermatol. 2005 Jun;152(6):1243-7. doi: 10.1111/j.1365-2133.2005.06643.x.
9
The natural history of human papillomavirus infections of the mucosal epithelia.
APMIS. 2010 Jun;118(6-7):422-49. doi: 10.1111/j.1600-0463.2010.02625.x.

引用本文的文献

1
Targeting papillomavirus infections: high-throughput screening reveals an effective inhibitor of cutaneous β-HPV types.
J Virol. 2025 Aug 19;99(8):e0091825. doi: 10.1128/jvi.00918-25. Epub 2025 Jul 8.
2
The POU-HD TFs impede the replication efficiency of several human papillomavirus genomes.
Virol J. 2024 Mar 5;21(1):54. doi: 10.1186/s12985-024-02334-w.
3
Experimental Support for Human Papillomavirus Genome Amplification Early after Infectious Delivery.
J Virol. 2023 Jun 29;97(6):e0021423. doi: 10.1128/jvi.00214-23. Epub 2023 May 18.
4
Transcription Properties of Beta-HPV8 and HPV38 Genomes in Human Keratinocytes.
J Virol. 2022 Dec 14;96(23):e0149822. doi: 10.1128/jvi.01498-22. Epub 2022 Nov 17.
6
Restriction of viral gene expression and replication prevents immortalization of human keratinocytes by a beta-human papillomavirus.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2118930119. doi: 10.1073/pnas.2118930119. Epub 2022 Mar 7.
7
Analysis of the Replication Mechanisms of the Human Papillomavirus Genomes.
Front Microbiol. 2021 Oct 18;12:738125. doi: 10.3389/fmicb.2021.738125. eCollection 2021.

本文引用的文献

2
Epithelial raft cultures for investigations of virus growth, pathogenesis and efficacy of antiviral agents.
Antiviral Res. 2010 Mar;85(3):431-49. doi: 10.1016/j.antiviral.2009.10.019. Epub 2009 Oct 31.
3
Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses.
PLoS Pathog. 2009 Apr;5(4):e1000397. doi: 10.1371/journal.ppat.1000397. Epub 2009 Apr 24.
4
A highly efficient system to produce infectious human papillomavirus: Elucidation of natural virus-host interactions.
Cell Cycle. 2009 May 1;8(9):1319-23. doi: 10.4161/cc.8.9.8242. Epub 2009 May 19.
5
Papillomavirus DNA replication - from initiation to genomic instability.
Virology. 2009 Feb 20;384(2):360-8. doi: 10.1016/j.virol.2008.11.032. Epub 2009 Jan 13.
6
Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes.
Genes Dev. 2009 Jan 15;23(2):181-94. doi: 10.1101/gad.1735109. Epub 2009 Jan 8.
7
Betapapillomaviruses: innocent bystanders or causes of skin cancer.
J Clin Virol. 2008 Dec;43(4):353-60. doi: 10.1016/j.jcv.2008.09.009. Epub 2008 Nov 4.
9
Functional mapping of the human papillomavirus type 16 E1 cistron.
J Virol. 2008 Nov;82(21):10724-34. doi: 10.1128/JVI.00921-08. Epub 2008 Aug 27.
10
Genomic instability of the host cell induced by the human papillomavirus replication machinery.
EMBO J. 2007 Apr 18;26(8):2180-91. doi: 10.1038/sj.emboj.7601665. Epub 2007 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验