Department of Bioengineering, University of California, Los Angeles, CA, USA.
Lab Chip. 2011 Mar 7;11(5):883-9. doi: 10.1039/c0lc00414f. Epub 2011 Jan 20.
Staphylococcus epidermidis is an opportunistic pathogen that has been implicated in hospital-acquired infections, specifically related to implanted intravascular devices. S. epidermidis adhesion is a mechanism of colonization, leading to pathogenesis. Here we demonstrate an easily fabricated and robust parallel microfluidic platform to investigate the physiologically-relevant effects of fluid shear on S. epidermidis adhesion to human fibrinogen (hFg) with increased experimental throughput. In situ molecular patterning using fluid flow boundaries allows for isolation of the molecular interactions in highly defined shear stress environments, while keeping the device operation simple and reproducible. We characterize two modes of attachment of S. epidermidis to hFg coated surfaces. Single colonies adhere in high fractions at low shear stresses (~1 dyne cm(-2)) and adhesion decays with increasing shear. However, clusters of bacteria adhere the highest at median wall shear stress (up to 10 dyne cm(-2)), and adhesion subsequently decays above this critical shear stress. This initial characterization suggests a previously unobserved phenomenon of shear activated cell-cell adhesion in S. epidermidis, which acts to increase the overall attachment strength to hFg. Both of these modes of attachment are dependant upon the presence of intact hFg, indicating that adhesion is resultant from specific molecular recognition between the bacteria and human fibrinogen. This platform provides new insight into complex host-pathogen interactions, and will allow for further investigation of colonization and pathogenesis in more physiologically relevant conditions.
表皮葡萄球菌是一种机会性病原体,与医院获得性感染有关,特别是与植入的血管内装置有关。表皮葡萄球菌的黏附是一种定植机制,导致发病机制。在这里,我们展示了一种易于制造且坚固的平行微流控平台,用于研究生理相关的流体剪切对表皮葡萄球菌与人纤维蛋白原(hFg)黏附的影响,同时提高了实验通量。使用流体流动边界的原位分子图案化允许在高度定义的剪切应力环境中分离分子相互作用,同时保持设备操作简单且可重复。我们表征了表皮葡萄球菌与涂覆有 hFg 的表面附着的两种模式。在低剪切应力(~1 达因/厘米 2)下,单个菌落以高分数附着,并且随着剪切力的增加而减少。然而,细菌簇在中值壁剪切应力(高达 10 达因/厘米 2)处附着最高,并且在超过此临界剪切应力后,附着随后减少。这种初始表征表明,表皮葡萄球菌中存在以前未观察到的剪切激活细胞间黏附的现象,这增加了对 hFg 的整体附着强度。这两种附着模式都依赖于完整的 hFg 的存在,表明黏附是由细菌和人纤维蛋白原之间的特异性分子识别引起的。该平台为复杂的宿主-病原体相互作用提供了新的见解,并将允许在更生理相关的条件下进一步研究定植和发病机制。