Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Brookline, MA 02115, USA.
J Neurol Sci. 2011 Apr 15;303(1-2):109-13. doi: 10.1016/j.jns.2010.12.024. Epub 2011 Jan 19.
Identifying predictors of clinical progression in patients with relapsing-remitting multiple sclerosis (RRMS) is complicated in the era of disease modifying therapy (DMT) because patients follow many different DMT regimens. To investigate predictors of progression in a treated RRMS sample, a cohort of RRMS patients was prospectively followed in the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB). Enrollment criteria were exposure to either interferon-β (IFN-β, n=164) or glatiramer acetate (GA, n=114) for at least 6 months prior to study entry. Baseline demographic and clinical features were used as candidate predictors of longitudinal clinical change on the Expanded Disability Status Scale (EDSS). We compared three approaches to account for DMT effects in statistical modeling. In all approaches, we analyzed all patients together and stratified based on baseline DMT. Model 1 used all available longitudinal EDSS scores, even those after on-study DMT changes. Model 2 used only clinical observations prior to changing DMT. Model 3 used causal statistical models to identify predictors of clinical change. When all patients were considered using Model 1, patients with a motor symptom as the first relapse had significantly larger change in EDSS scores during follow-up (p=0.04); none of the other clinical or demographic variables significantly predicted change. In Models 2 and 3, results were generally unchanged. DMT modeling choice had a modest impact on the variables classified as predictors of EDSS score change. Importantly, however, interpretation of these predictors is dependent upon modeling choice.
在疾病修正治疗 (DMT) 时代,识别复发缓解型多发性硬化症 (RRMS) 患者的临床进展预测因素变得复杂,因为患者遵循许多不同的 DMT 方案。为了研究治疗 RRMS 样本中的进展预测因素,前瞻性地在布里格姆妇女医院 (Brigham and Women's Hospital) 的多发性硬化综合纵向研究 (CLIMB) 中对一组 RRMS 患者进行了研究。纳入标准为在研究入组前至少接受了 6 个月的干扰素-β (IFN-β,n=164) 或醋酸格拉替雷 (GA,n=114) 的治疗。使用基线人口统计学和临床特征作为扩展残疾状态量表 (EDSS) 纵向临床变化的候选预测因素。我们比较了三种方法来解释统计模型中的 DMT 效应。在所有方法中,我们一起分析了所有患者,并根据基线 DMT 进行分层。模型 1 使用了所有可用的纵向 EDSS 评分,即使是在研究期间 DMT 变化后也是如此。模型 2 仅使用 DMT 变化前的临床观察结果。模型 3 使用因果统计模型来识别临床变化的预测因素。当使用模型 1 考虑所有患者时,首次复发时以运动症状为表现的患者在随访期间 EDSS 评分的变化显著更大 (p=0.04);其他临床或人口统计学变量均无显著预测作用。在模型 2 和 3 中,结果基本不变。DMT 建模选择对被分类为 EDSS 评分变化预测因素的变量有一定影响。然而,重要的是,这些预测因素的解释取决于建模选择。