Suppr超能文献

六肽链帽状聚集形成氢键模体,代表折叠和波纹β-片层、胶原蛋白以及聚甘氨酸 I 和 II 晶体结构。密度泛函理论研究。

Aggregation of capped hexaglycine strands into hydrogen-bonding motifs representative of pleated and rippled β-sheets, collagen, and polyglycine I and II crystal structures. A density functional theory study.

机构信息

Department of Chemistry, Hunter College and the Graduate School, City University of New York, 695 Park Avenue, New York, New York 10065, USA.

出版信息

J Phys Chem B. 2011 Feb 17;115(6):1562-70. doi: 10.1021/jp111501d. Epub 2011 Jan 25.

Abstract

We compare the energies and enthalpies of inter-action of three- and seven-stranded capped polyglycine aggregates in both the pleated and rippled antiparallel and parallel β-sheet structures as well as the collagenic (three-strand) or polyglycine II-like (seven-strand) forms using density functional theory at the B3LYP/D95(d,p) level. We present the overall interaction energies as broken down into pure H-bonding between the strands at the geometries they assume in the aggregates and the distortion energies required to achieve those geometries starting from the fully relaxed single strands. While the antiparallel sheets represent the most stable structures for both the three- and seven-strand structures, the pure H-bonding interactions are the smallest for these structures. The overall interaction energies are dominated by the energy required to distort the relaxed polyglycine strands rather than the H-bonding energies. The antiparallel β-sheet constrained to C(s) symmetry has a lower enthalpy, but higher energy, of interaction than the fully optimized structure.

摘要

我们使用密度泛函理论(B3LYP/D95(d,p)),比较了三股和七股加帽聚甘氨酸聚集体在折叠和波纹反平行和平行β-折叠结构以及胶原(三股)或聚甘氨酸 II 样(七股)形式中的相互作用能和焓。我们将总相互作用能分解为在聚集体中它们假定的构象中链之间的纯氢键以及从完全松弛的单链开始达到这些构象所需的变形能。虽然反平行片层代表了三股和七股结构中最稳定的结构,但这些结构中的纯氢键相互作用最小。总相互作用能主要由扭曲松弛聚甘氨酸链所需的能量决定,而不是氢键能。受 C(s) 对称约束的反平行β-片层具有比完全优化结构更低的焓,但具有更高的相互作用能。

相似文献

5
Comparisons of β-Hairpin Propensity Among Peptides with Homochiral or Heterochiral Strands.
Chembiochem. 2021 Sep 14;22(18):2772-2776. doi: 10.1002/cbic.202100324. Epub 2021 Jul 30.
6
Density functional theory study of β-hairpins in antiparallel β-sheets, a new classification based upon H-bond topology.
Biochemistry. 2012 Jul 10;51(27):5387-93. doi: 10.1021/bi3006785. Epub 2012 Jun 27.
7
Dimorphism of polyglycine I: structural models for crystal modifications.
Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):436-42. doi: 10.1107/s0907444998012438.
8
Rippled Sheets: The Early Polyglycine Days and Recent Developments in Nylons.
Chembiochem. 2022 Mar 4;23(5):e202100658. doi: 10.1002/cbic.202100658. Epub 2022 Feb 2.
9
Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets.
J Mol Biol. 1995 Sep 22;252(3):366-76. doi: 10.1006/jmbi.1995.0503.
10
A DFT study of structure and stability of pleated and rippled cross-β sheets with hydrophobic sidechains.
Biopolymers. 2021 Jan;112(1):e23391. doi: 10.1002/bip.23391. Epub 2020 Aug 1.

引用本文的文献

1
Hydrogen bonding patterns and cooperativity in polyproline II helical bundles.
Commun Chem. 2024 Aug 30;7(1):191. doi: 10.1038/s42004-024-01268-2.

本文引用的文献

3
A density functional theory study of vibrational coupling in the amide I band of beta-sheet models.
J Phys Chem B. 2008 Apr 24;112(16):5199-208. doi: 10.1021/jp8001004. Epub 2008 Apr 3.
6
Structure of polyglycine.
Nature. 1949 May 7;163(4149):722. doi: 10.1038/163722a0.
7
How accurate are DFT treatments of organic energies?
Org Lett. 2007 May 10;9(10):1851-4. doi: 10.1021/ol070354w. Epub 2007 Apr 7.
8
Cooperative 4-pyridone H-bonds with extraordinary stability. A DFT molecular orbital study.
J Am Chem Soc. 2006 Jun 28;128(25):8100-1. doi: 10.1021/ja060494l.
9
Two Rippled-Sheet Configurations of Polypeptide Chains, and a Note about the Pleated Sheets.
Proc Natl Acad Sci U S A. 1953 Apr;39(4):253-6. doi: 10.1073/pnas.39.4.253.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验