Pálfi Villo K, Perczel András
Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
J Comput Chem. 2008 Jul 15;29(9):1374-86. doi: 10.1002/jcc.20896.
Collagen forms the well characterized triple helical secondary structure, stabilized by interchain H-bonds. Here we have investigated the stability of fully optimized collagen triple helices and beta-pleated sheets by using first principles (ab initio and DFT) calculations so as to determine the secondary structure preference depending on the amino acid composition. Models composed of a total of 18 amino acid residues were studied at six different amino acid compositions: (i) L-alanine only, (ii) glycine only, (iii) L-alanines and glycine, (iv) L-alanines and D-alanine, (v) L-prolines with glycine, (vi) L-proline, L-hydroxyproline, and glycine. The last two, v and vi, were designed to mimic the core part of collagen. Furthermore, ii, iii, and iv model the binding and/or recognition sites of collagen. Finally, i models the G-->A replacement, rare in collagen. All calculated structures show great resemblance to those determined by X-ray crystallography. Calculated triple helix formation affinities correlate well with experimentally determined stabilities derived from melting point (T(m)) data of different collagen models. The stabilization energy of a collagen triple helical structure over that of a beta-pleated sheet is 2.1 kcal mol(-1) per triplet for the (-Pro-Hyp-Gly-)(2) collagen peptide. This changes to 4.8 kcal mol(-1) per triplet of destabilization energy for the (-Ala-Ala-Gly-)(2) sequence, known to be disfavored in collagen. The present study proves that by using first principles methods for calculating stabilities of supramolecular complexes, such as collagen and beta-pleated sheets, one can obtain stability data in full agreement with experimental observations, which envisage the applicability of QM in molecular design.
胶原蛋白形成了特征明确的三螺旋二级结构,通过链间氢键得以稳定。在此,我们运用第一性原理(从头算和密度泛函理论)计算方法,研究了完全优化后的胶原蛋白三螺旋和β折叠片层的稳定性,以便根据氨基酸组成确定二级结构偏好。我们研究了由总共18个氨基酸残基组成的模型,这些模型具有六种不同的氨基酸组成:(i)仅含L - 丙氨酸,(ii)仅含甘氨酸,(iii)L - 丙氨酸和甘氨酸,(iv)L - 丙氨酸和D - 丙氨酸,(v)L - 脯氨酸与甘氨酸,(vi)L - 脯氨酸、L - 羟脯氨酸和甘氨酸。最后两种情况,即(v)和(vi),旨在模拟胶原蛋白的核心部分。此外,(ii)、(iii)和(iv)模拟了胶原蛋白的结合和/或识别位点。最后,(i)模拟了胶原蛋白中罕见的G→A替换。所有计算得到的结构与通过X射线晶体学确定的结构高度相似。计算得到的三螺旋形成亲和力与从不同胶原蛋白模型的熔点(T(m))数据得出的实验测定稳定性密切相关。对于(-Pro - Hyp - Gly -)(2)胶原蛋白肽,胶原蛋白三螺旋结构相对于β折叠片层的稳定能为每个三联体2.1千卡/摩尔。对于已知在胶原蛋白中不利的(-Ala - Ala - Gly -)(2)序列,这一数值变为每个三联体4.8千卡/摩尔的去稳定能。本研究证明,通过使用第一性原理方法计算超分子复合物(如胶原蛋白和β折叠片层)的稳定性,可以获得与实验观察结果完全一致的稳定性数据,这预示着量子力学在分子设计中的适用性。