Suppr超能文献

半导体单壁碳纳米管中的纯光学退相动力学。

Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.

机构信息

Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2011 Jan 21;134(3):034504. doi: 10.1063/1.3530582.

Abstract

We report a detailed study of ultrafast exciton dephasing processes in semiconducting single-walled carbon nanotubes employing a sample highly enriched in a single tube species, the (6,5) tube. Systematic measurements of femtosecond pump-probe, two-pulse photon echo, and three-pulse photon echo peak shift over a broad range of excitation intensities and lattice temperature (from 4.4 to 292 K) enable us to quantify the timescales of pure optical dephasing (T(2)()), along with exciton-exciton and exciton-phonon scattering, environmental effects as well as spectral diffusion. While the exciton dephasing time (T(2)) increases from 205 fs at room temperature to 320 fs at 70 K, we found that further decrease of the lattice temperature leads to a shortening of the T(2) times. This complex temperature dependence was found to arise from an enhanced relaxation of exciton population at lattice temperatures below 80 K. By quantitatively accounting the contribution from the population relaxation, the corresponding pure optical dephasing times increase monotonically from 225 fs at room temperature to 508 fs at 4.4 K. We further found that below 180 K, the pure dephasing rate (1/T(2)()) scales linearly with temperature with a slope of 6.7 ± 0.6 μeV/K, which suggests dephasing arising from one-phonon scattering (i.e., acoustic phonons). In view of the large dynamic disorder of the surrounding environment, the origin of the long room temperature pure dephasing time is proposed to result from reduced strength of exciton-phonon coupling by motional narrowing over nuclear fluctuations. This consideration further suggests the occurrence of remarkable initial exciton delocalization and makes nanotubes ideal to study many-body effects in spatially confined systems.

摘要

我们报告了在半导体单壁碳纳米管中超快激子退相过程的详细研究,采用了高度富集单一种类管的样品,即(6,5)管。在广泛的激发强度和晶格温度范围内(从 4.4 到 292 K)进行飞秒泵浦-探针、双脉冲光子回波和三脉冲光子回波峰移的系统测量,使我们能够量化纯光学退相(T(2)())的时间尺度,以及激子-激子和激子-声子散射、环境效应以及光谱扩散。虽然激子退相时间(T(2))从室温下的 205 fs 增加到 70 K 时的 320 fs,但我们发现进一步降低晶格温度会导致 T(2)时间缩短。这种复杂的温度依赖性是由于在晶格温度低于 80 K 时激子种群的弛豫增强而引起的。通过定量地考虑种群弛豫的贡献,相应的纯光学退相时间从室温下的 225 fs单调增加到 4.4 K 下的 508 fs。我们还发现,在 180 K 以下,纯退相率(1/T(2)()) 与温度呈线性关系,斜率为 6.7±0.6 μeV/K,这表明退相是由单一声子散射(即声子)引起的。鉴于周围环境的大动态无序,室温下长纯退相时间的起源被认为是由于核涨落引起的运动变窄导致激子-声子耦合强度降低。这种考虑进一步表明了初始激子离域化的显著程度,并使纳米管成为研究空间受限系统中多体效应的理想选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验