Suppr超能文献

在高注意力需求下推广语言结构。

Generalizing linguistic structures under high attention demands.

机构信息

Departament de Tecnologies de la Informacio i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

J Exp Psychol Learn Mem Cogn. 2011 Mar;37(2):493-501. doi: 10.1037/a0022056.

Abstract

We explored whether the generalization of rules based on simple structures depends on attention. Participants were exposed to a stream of artificial words that followed a simple syllabic structure (ABA or AAB), overlaid on a sequence of familiar noises. After passively listening, participants successfully recognized the individual words present in the stream among foils, and they were able to generalize the underlying word structure to new exemplars. Yet, when attention was diverted from the speech stream (by requiring participants to monitor the sequence of noises), recognition of the individual words fell dramatically irrespective of word structure, whereas generalization depended on stimulus structure. For structures based on vowel repetitions across nonadjacent syllables (ABA; Experiment 1), generalization was affected by attention. In contrast, for structures based on adjacent repetitions (AAB; Experiment 2), generalization capacity was unaffected by attention. This pattern of results was replicated under favorable conditions for generalization, such as increased token variability and the implementation of the rule over whole syllables (Experiments 3 and 4). These results suggest a differential effect of attention on rule learning and generalization depending on stimulus structure.

摘要

我们探讨了基于简单结构的规则泛化是否依赖于注意力。参与者暴露于一系列遵循简单音节结构(ABA 或 AAB)的人工词流中,同时叠加熟悉的噪声序列。在被动聆听之后,参与者能够在干扰项中成功识别出词流中存在的单个单词,并且能够将潜在的单词结构推广到新的示例中。然而,当注意力从语音流转移(要求参与者监控噪声序列)时,无论单词结构如何,对单个单词的识别都会显著下降,而泛化则取决于刺激结构。对于基于非相邻音节元音重复的结构(ABA;实验 1),注意力会影响泛化。相比之下,对于基于相邻重复的结构(AAB;实验 2),注意力对泛化能力没有影响。在有利于泛化的条件下(例如增加标记变异性和在整个音节上实施规则;实验 3 和 4),重复了这种结果模式。这些结果表明,注意力对规则学习和泛化的影响取决于刺激结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验