Konsti Juho, Lundin Mikael, Joensuu Heikki, Lehtimäki Tiina, Sihto Harri, Holli Kaija, Turpeenniemi-Hujanen Taina, Kataja Vesa, Sailas Liisa, Isola Jorma, Lundin Johan
FIMM - Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
BMC Clin Pathol. 2011 Jan 25;11:3. doi: 10.1186/1472-6890-11-3.
The aim of the study was to develop a virtual microscopy enabled method for assessment of Ki-67 expression and to study the prognostic value of the automated analysis in a comprehensive series of patients with breast cancer.
Using a previously reported virtual microscopy platform and an open source image processing tool, ImageJ, a method for assessment of immunohistochemically (IHC) stained area and intensity was created. A tissue microarray (TMA) series of breast cancer specimens from 1931 patients was immunostained for Ki-67, digitized with a whole slide scanner and uploaded to an image web server. The extent of Ki-67 staining in the tumour specimens was assessed both visually and with the image analysis algorithm. The prognostic value of the computer vision assessment of Ki-67 was evaluated by comparison of distant disease-free survival in patients with low, moderate or high expression of the protein.
1648 evaluable image files from 1334 patients were analysed in less than two hours. Visual and automated Ki-67 extent of staining assessments showed a percentage agreement of 87% and weighted kappa value of 0.57. The hazard ratio for distant recurrence for patients with a computer determined moderate Ki-67 extent of staining was 1.77 (95% CI 1.31-2.37) and for high extent 2.34 (95% CI 1.76-3.10), compared to patients with a low extent. In multivariate survival analyses, automated assessment of Ki-67 extent of staining was retained as a significant prognostic factor.
Running high-throughput automated IHC algorithms on a virtual microscopy platform is feasible. Comparison of visual and automated assessments of Ki-67 expression shows moderate agreement. In multivariate survival analysis, the automated assessment of Ki-67 extent of staining is a significant and independent predictor of outcome in breast cancer.
本研究旨在开发一种利用虚拟显微镜评估Ki-67表达的方法,并在一系列全面的乳腺癌患者中研究自动分析的预后价值。
使用先前报道的虚拟显微镜平台和开源图像处理工具ImageJ,创建了一种评估免疫组织化学(IHC)染色面积和强度的方法。对来自1931例患者的乳腺癌标本组织芯片(TMA)系列进行Ki-67免疫染色,用全切片扫描仪数字化并上传至图像网络服务器。通过视觉和图像分析算法评估肿瘤标本中Ki-67染色的程度。通过比较蛋白低、中或高表达患者的远处无病生存率,评估Ki-67计算机视觉评估的预后价值。
在不到两小时内分析了来自1334例患者的1648个可评估图像文件。视觉和自动评估的Ki-67染色程度百分比一致性为87%,加权kappa值为0.57。与低染色程度患者相比,计算机确定的Ki-67染色程度为中等的患者远处复发风险比为1.77(95%CI 1.31-2.37),高染色程度患者为2.34(95%CI 1.76-3.10)。在多因素生存分析中,Ki-67染色程度的自动评估被保留为一个显著的预后因素。
在虚拟显微镜平台上运行高通量自动免疫组化算法是可行的。Ki-67表达的视觉和自动评估比较显示出中等一致性。在多因素生存分析中,Ki-67染色程度的自动评估是乳腺癌预后的一个显著且独立的预测因素。