Suppr超能文献

蛋白质结构预测

Protein structure prediction.

作者信息

Garnier J

机构信息

Unité d'Ingénierie des Protéines Biotechnologies, INRA, Jouy-en-Josas, France.

出版信息

Biochimie. 1990 Aug;72(8):513-24. doi: 10.1016/0300-9084(90)90115-w.

Abstract

Current methods developed for predicting protein structure are reviewed. The most widely used algorithms of Chou and Fasman and Garnier et al for predicting secondary structure are compared to the most recent ones including sequence similarity methods, neural network, pattern recognition or joint prediction methods. The best of these methods correctly predict 63-65% of the residues in the database with cross-validation for 3 conformations, helix, beta strand and coli with a standard deviation of 6-8% per protein. However, when a homologous protein is already in the database, the accuracy of prediction by the similarity peptide method of Levin and Garnier reaches about 90%. Some conclusions can be drawn on the mechanism of protein folding. As all the prediction methods only use the local sequence for prediction (+/- 8 residues maximum) one can infer that 65% of the conformation of a residue is dictated on average by the local sequence, the rest is brought by the folding. The best predicted proteins or peptide segments are those for which the folding has less effect on the conformation. Presently, prediction of tertiary structure is only of practical use when the structure of a homologous protein is already known. Amino acid alignment to define residues of equivalent spatial position is critical for modelling of the protein. We showed for serine proteases that secondary structure prediction can help to define a better alignment. Non-homologous segments of the polypeptide chain, such as loops, libraries of known loops and/or energy minimization with various force fields, are used without yet giving satisfactory solutions. An example of modelling by homology, aided by secondary structure prediction on 2 regulatory proteins, Fnr and FixK is presented.

摘要

本文综述了目前开发的用于预测蛋白质结构的方法。将最广泛使用的用于预测二级结构的周和法斯曼算法以及加尼尔等人的算法与最新的方法进行了比较,最新方法包括序列相似性方法、神经网络、模式识别或联合预测方法。在对三种构象(螺旋、β链和无规卷曲)进行交叉验证时,这些方法中最好的能正确预测数据库中63%-65%的残基,每个蛋白质的标准差为6%-8%。然而,当数据库中已经存在同源蛋白质时,莱文和加尼尔的相似肽方法的预测准确率可达90%左右。可以就蛋白质折叠机制得出一些结论。由于所有预测方法仅使用局部序列进行预测(最多±8个残基),因此可以推断,一个残基构象的65%平均由局部序列决定,其余部分则由折叠产生。预测效果最好的蛋白质或肽段是那些折叠对构象影响较小的。目前,只有当同源蛋白质的结构已知时,三级结构预测才具有实际用途。氨基酸比对以确定等效空间位置的残基对于蛋白质建模至关重要。我们对丝氨酸蛋白酶的研究表明,二级结构预测有助于确定更好的比对。多肽链的非同源片段,如环、已知环库和/或使用各种力场的能量最小化方法,目前尚未给出令人满意的解决方案。本文给出了一个同源建模的例子,该例子借助对两种调节蛋白Fnr和FixK的二级结构预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验