Department of Biological Sciences, University of Massachusetts Lowell, One University Ave,, Lowell, MA 01854, USA.
Part Fibre Toxicol. 2011 Jan 25;8:4. doi: 10.1186/1743-8977-8-4.
Numerous engineered nanomaterials (ENMs) exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB), uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf). We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs).
We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs) (benign substances) or SWCNT (3-150 μg/ml) in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 μg/ml) treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots was linearly SWCNT-dose dependent. Lastly, the frequency never reversed at high dose SWCNT (100-150 μg/ml), and apoptosis/necrosis was documented in conventional 24 and 48 hr-assays.
These data suggest that the new QCMB detects and provides unique information about peak, sub-lethal and toxic exposures of living cells to ENMs before they are detected using conventional cell assays.
存在许多工程纳米材料(ENMs),并且正在开发新的 ENMs。纳米毒理学和环境健康与安全面临的挑战是,在广泛使用之前评估 ENMs 的毒性。细胞测定仍然是主要的测试平台,但这些方法受到离散时间终点的限制,并且依赖于有机染料,容易受到 ENMs 的干扰。需要具有生物学意义终点的无标记、连续、快速响应系统。我们已经开发了一种用于实时检测和监测活细胞对 ENMs 反应的设备。该设备是一种活细胞石英晶体微天平生物传感器(QCMB),使用附着在石英晶体上的巨噬细胞。巨噬细胞对处理的共同反应作为晶体振荡频率(Δf)的变化连续监测。我们报告了该 QCMB 区分良性和毒性暴露的能力,并揭示了细胞对不同剂量单壁碳纳米管(SWCNT)的反应的独特动力学信息。
我们在 QCMB 中分析了巨噬细胞对添加的几丁质聚糖 A、聚苯乙烯珠(PBs)(良性物质)或 SWCNT(3-150μg/ml)的反应,时间超过 18 小时。同时,使用传统的活力测定和组织学染色在 24/48 小时内监测毒性,以检测凋亡。在 QCMB 中,当单独使用细胞、几丁质聚糖 A 单独、PBs 单独或最高剂量单独的 SWCNTs 时,会出现稳定不变的振荡频率。当 QCMB 中有活细胞时,当添加几丁质聚糖 A、PBs 或 SWCNTs 时,频率会在 1-6 小时内显着下降。对于 SWCNTs,这种Δf 是剂量依赖性的。从 6 到 18 小时,良性物质或低剂量 SWCNT(3-30μg/ml)处理显示出振荡频率下降的逆转,恢复到或超过预处理水平。细胞恢复在常规测定中得到证实。在 QCMB 图谱中看到Δf 逆转的滞后时间与 SWCNT 剂量呈线性依赖性。最后,在高剂量 SWCNT(100-150μg/ml)时,频率从未逆转,并且在传统的 24 和 48 小时测定中记录了细胞凋亡/坏死。
这些数据表明,新的 QCMB 在使用传统细胞测定法之前检测到并提供了有关活细胞对 ENMs 的峰值、亚致死和毒性暴露的独特信息。