Biomicrofluidics. 2010 Dec 29;4(4):44113. doi: 10.1063/1.3523059.
Polyelectrolyte multilayers (PEMs) based on the combinations poly(diallyldimethylammonium chloride)∕poly(acrylic acid) (PDADMAC∕PAA) and poly(allylamine hydrochloride)∕PAA (PAH∕PAA) were adsorbed on poly(dimethylsiloxane) (PDMS) and tested for nonspecific surface attachment of hydrophobic yeast cells using a parallel plate flow chamber. A custom-made graft copolymer containing poly(ethylene glycol) (PEG) side chains (PAA-g-PEG) was additionally adsorbed on the PEMs as a terminal layer. A suitable PEM modification effectively decreased the adhesion strength of Saccharomyces cerevisiae DSM 2155 to the channel walls. However, a further decrease in initial cell attachment and adhesion strength was observed after adsorption of PAA-g-PEG copolymer onto PEMs from aqueous solution. The results demonstrate that a facile layer-by-layer surface functionalization from aqueous solutions can be successfully applied to reduce cell adhesion strength of S. cerevisiae by at least two orders of magnitude compared to bare PDMS. Therefore, this method is potentially suitable to promote planktonic growth inside capped PDMS-based microfluidic devices if the PEM deposition is completed by a dynamic flow-through process.
基于聚二烯丙基二甲基氯化铵/聚丙烯酸(PDADMAC/PAA)和聚烯丙基胺盐酸盐/PAA(PAH/PAA)组合的聚电解质多层(PEM)被吸附在聚二甲基硅氧烷(PDMS)上,并使用平行板流动室测试疏水性酵母细胞的非特异性表面附着。此外,将含有聚乙二醇(PEG)侧链的定制接枝共聚物(PAA-g-PEG)作为端层另外吸附在 PEM 上。合适的 PEM 修饰可有效降低酿酒酵母 DSM 2155 与通道壁的粘附强度。然而,在从水溶液吸附 PAA-g-PEG 共聚物到 PEM 上后,初始细胞附着和粘附强度进一步降低。结果表明,通过从水溶液中进行简单的层层表面功能化,可以成功地将酿酒酵母的细胞粘附强度降低至少两个数量级,与裸 PDMS 相比。因此,如果通过动态流动过程完成 PEM 沉积,则该方法有可能适合促进加盖 PDMS 基微流控装置内的浮游生长。