Marie Rodolphe, Beech Jason P, Vörös Janos, Tegenfeldt Jonas O, Höök Fredrik
Division of Solid State Physics, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
Langmuir. 2006 Nov 21;22(24):10103-8. doi: 10.1021/la060198m.
By utilizing flow-controlled PLL-g-PEG and PLL-g-PEGbiotin modification of predefined regions of a poly(dimethylsiloxane) (PDMS) micro-fluidic device, with an intentionally chosen large (approximately 1 cm2) internal surface area, we report rapid (10 min), highly localized (6 x 10(-6) cm2), and specific surface-based protein capture from a sample volume (100 microL) containing a low amount of protein (160 attomol in pure buffer and 400 attomol in serum). The design criteria for this surface modification were achieved using QCM-D (quartz crystal microbalance with energy dissipation monitoring) of serum protein adsorption onto PLL-g-PEG-modified oxidized PDMS. Equally good, or almost as good, results were obtained for oxidized SU-8, Topas, and poly(methyl metacrylate) (PMMA), demonstrating the generic potential of PLL-g-PEG for surface modification in various micro-fluidic applications.
通过利用流量控制的PLL-g-PEG以及对聚二甲基硅氧烷(PDMS)微流控装置的预定义区域进行PLL-g-PEG生物素修饰,该装置具有特意选择的较大(约1平方厘米)内表面积,我们报告了从含有少量蛋白质(纯缓冲液中为160阿托摩尔,血清中为400阿托摩尔)的样品体积(100微升)中进行快速(10分钟)、高度局部化(6×10⁻⁶平方厘米)且基于表面特异性的蛋白质捕获。使用石英晶体微天平与能量耗散监测(QCM-D)来监测血清蛋白在PLL-g-PEG修饰的氧化PDMS上的吸附,从而实现了这种表面修饰的设计标准。对于氧化的SU-8、Topas和聚甲基丙烯酸甲酯(PMMA),也获得了同样好或几乎同样好的结果,这证明了PLL-g-PEG在各种微流控应用中进行表面修饰的普遍潜力。