Suppr超能文献

基于证据的药物获益-风险分析决策中的随机多准则模型。

A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis.

机构信息

Econometric Institute, Erasmus University Rotterdam, The Netherlands.

出版信息

Stat Med. 2011 May 30;30(12):1419-28. doi: 10.1002/sim.4194. Epub 2011 Jan 26.

Abstract

Drug benefit-risk (BR) analysis is based on firm clinical evidence regarding various safety and efficacy outcomes. In this paper, we propose a new and more formal approach for constructing a supporting multi-criteria model that fully takes into account the evidence on efficacy and adverse drug reactions. Our approach is based on the stochastic multi-criteria acceptability analysis methodology, which allows us to compute the typical value judgments that support a decision, to quantify decision uncertainty, and to compute a comprehensive BR profile. We construct a multi-criteria model for the therapeutic group of second-generation antidepressants. We assess fluoxetine and venlafaxine together with placebo according to incidence of treatment response and three common adverse drug reactions by using data from a published study. Our model shows that there are clear trade-offs among the treatment alternatives.

摘要

药物的获益-风险(BR)分析是基于有关各种安全性和疗效结果的可靠临床证据。在本文中,我们提出了一种新的、更为正式的方法来构建一个支持性的多标准模型,该模型充分考虑了疗效和药物不良反应的证据。我们的方法基于随机多标准可接受性分析方法,该方法允许我们计算支持决策的典型价值判断,量化决策不确定性,并计算综合的 BR 概况。我们为第二代抗抑郁药治疗组构建了一个多标准模型。我们根据一项已发表研究的数据,使用治疗反应发生率和三种常见药物不良反应,对氟西汀和文拉法辛与安慰剂进行了评估。我们的模型表明,治疗选择之间存在明显的权衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验