Suppr超能文献

鉴定非永生化人 T 细胞中的辐射诱导表达变化。

Identification of radiation-induced expression changes in nonimmortalized human T cells.

机构信息

Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.

出版信息

Radiat Res. 2011 Feb;175(2):172-84. doi: 10.1667/rr1977.1. Epub 2010 Nov 17.

Abstract

In the event of a radiation accident or attack, it will be imperative to quickly assess the amount of radiation exposure to accurately triage victims for appropriate care. RNA-based radiation dosimetry assays offer the potential to rapidly screen thousands of individuals in an efficient and cost-effective manner. However, prior to the development of these assays, it will be critical to identify those genes that will be most useful to delineate different radiation doses. Using global expression profiling, we examined expression changes in nonimmortalized T cells across a wide range of doses (0.15-12 Gy). Because many radiation responses are highly dependent on time, expression changes were examined at three different times (3, 8, and 24 h). Analyses identified 61, 512 and 1310 genes with significant linear dose-dependent expression changes at 3, 8 and 24 h, respectively. Using a stepwise regression procedure, a model was developed to estimate in vitro radiation exposures using the expression of three genes (CDKN1A, PSRC1 and TNFSF4) and validated in an independent test set with 86% accuracy. These findings suggest that RNA-based expression assays for a small subset of genes can be employed to develop clinical biodosimetry assays to be used in assessments of radiation exposure and toxicity.

摘要

在辐射事故或袭击的情况下,快速评估辐射暴露量对于准确对受害者进行分类并提供适当的护理至关重要。基于 RNA 的辐射剂量测定分析有潜力以高效且具有成本效益的方式快速筛选数千人。然而,在开发这些分析方法之前,确定那些最有助于区分不同辐射剂量的基因将是至关重要的。我们使用全局表达谱分析,研究了非永生化 T 细胞在广泛剂量范围内(0.15-12Gy)的表达变化。由于许多辐射反应高度依赖于时间,因此在三个不同时间点(3、8 和 24 小时)检查了表达变化。分析分别在 3、8 和 24 小时时确定了 61、512 和 1310 个具有显著线性剂量依赖性表达变化的基因。使用逐步回归程序,开发了一种使用三个基因(CDKN1A、PSRC1 和 TNFSF4)的表达来估计体外辐射暴露的模型,并在具有 86%准确性的独立测试集中进行了验证。这些发现表明,可以使用基于 RNA 的少数基因表达分析来开发临床生物剂量测定分析,以用于评估辐射暴露和毒性。

相似文献

1
Identification of radiation-induced expression changes in nonimmortalized human T cells.
Radiat Res. 2011 Feb;175(2):172-84. doi: 10.1667/rr1977.1. Epub 2010 Nov 17.
4
Accurate gene expression-based biodosimetry using a minimal set of human gene transcripts.
Int J Radiat Oncol Biol Phys. 2014 Mar 15;88(4):933-9. doi: 10.1016/j.ijrobp.2013.11.248. Epub 2014 Jan 17.
5
RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay.
Radiat Res. 2023 Jun 1;199(6):598-615. doi: 10.1667/RADE-22-00206.1.
6
Comparison of established and emerging biodosimetry assays.
Radiat Res. 2013 Aug;180(2):111-9. doi: 10.1667/RR3231.1. Epub 2013 Jul 17.
7
Developing point of care and high-throughput biological assays for determining absorbed radiation dose.
Radiother Oncol. 2011 Oct;101(1):233-6. doi: 10.1016/j.radonc.2011.05.068. Epub 2011 Jul 1.
8
Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model.
Radiat Res. 2015 Jul;184(1):24-32. doi: 10.1667/RR14044.1. Epub 2015 Jun 26.
9
Gene expression-based dosimetry by dose and time in mice following acute radiation exposure.
PLoS One. 2013 Dec 16;8(12):e83390. doi: 10.1371/journal.pone.0083390. eCollection 2013.
10
Cytogenetically-based biodosimetry after high doses of radiation.
PLoS One. 2020 Apr 22;15(4):e0228350. doi: 10.1371/journal.pone.0228350. eCollection 2020.

引用本文的文献

2
Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes.
Cytogenet Genome Res. 2023;163(3-4):178-186. doi: 10.1159/000531702. Epub 2023 Jun 27.
4
Transcriptomics for radiation biodosimetry: progress and challenges.
Int J Radiat Biol. 2023;99(6):925-933. doi: 10.1080/09553002.2021.1928784. Epub 2021 May 21.
5
Screening of Long Noncoding RNAs Induced by Radiation Using Microarray.
Dose Response. 2020 Apr 6;18(2):1559325820916304. doi: 10.1177/1559325820916304. eCollection 2020 Apr-Jun.
6
New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells.
Sci Rep. 2019 Dec 5;9(1):18441. doi: 10.1038/s41598-019-54967-5.
7
Transcriptomic responses in mouse blood during the first week after in vivo gamma irradiation.
Sci Rep. 2019 Dec 4;9(1):18364. doi: 10.1038/s41598-019-54780-0.
8
Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review.
PLoS One. 2018 Jun 7;13(6):e0198851. doi: 10.1371/journal.pone.0198851. eCollection 2018.

本文引用的文献

1
A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS.
Blood. 2009 Jun 25;113(26):6541-8. doi: 10.1182/blood-2009-02-202598. Epub 2009 Apr 23.
2
p53 target DDA3 binds ASPP2 and inhibits its stimulation on p53-mediated BAX activation.
Biochem Biophys Res Commun. 2008 Nov 14;376(2):395-8. doi: 10.1016/j.bbrc.2008.08.168. Epub 2008 Sep 13.
3
Rapid induction of OX40 ligand on primary T cells activated under DNA-damaging conditions.
Hum Immunol. 2008 Sep;69(9):533-42. doi: 10.1016/j.humimm.2008.07.001. Epub 2008 Aug 15.
4
Gene expression profiling identifies genes predictive of oral squamous cell carcinoma.
Cancer Epidemiol Biomarkers Prev. 2008 Aug;17(8):2152-62. doi: 10.1158/1055-9965.EPI-07-2893. Epub 2008 Jul 31.
5
Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells.
Leukemia. 2009 Feb;23(2):391-3. doi: 10.1038/leu.2008.176. Epub 2008 Jul 3.
6
Development of gene expression signatures for practical radiation biodosimetry.
Int J Radiat Oncol Biol Phys. 2008 Jul 15;71(4):1236-1244. doi: 10.1016/j.ijrobp.2008.03.043.
9
DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement.
J Cell Biol. 2008 Apr 21;181(2):255-67. doi: 10.1083/jcb.200711032. Epub 2008 Apr 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验