Suppr超能文献

基于蛋白质的 FBPase 抑制剂 3D-QSAR 排列。

Protein-based alignment in 3D-QSAR of FBPase inhibitors.

机构信息

Key Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, Honghe University, Mengzi 661100, China.

出版信息

Eur J Med Chem. 2011 Mar;46(3):885-92. doi: 10.1016/j.ejmech.2010.12.027. Epub 2011 Jan 9.

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on Frusectose-1, 6-bisphosphatase (FBPase) inhibitors, based on molecular docking obtained by using GOLD and comparative molecular field analysis (CoMFA). Three random splits into training and test sets had been performed and the high leave-one-out (LOO) cross-validated correlation coefficients q(2) of 0.781, 0.725 and 0.801, respectively, revealed that the models are useful tools for the prediction of test sets as well as newly designed structures against FBPase activity. The superimposed CoMFA models on the receptor site of FBPase are guiding the design of potential inhibitory structures directed against FBPase activity.

摘要

基于使用 GOLD 软件进行分子对接获得的结果,对 Frusectose-1,6-双磷酸酶 (FBPase) 抑制剂进行了三维定量构效关系 (3D-QSAR) 研究,并进行了比较分子场分析 (CoMFA)。采用三种随机分割方法将数据集分为训练集和测试集,高留一交叉验证相关系数 q(2)分别为 0.781、0.725 和 0.801,表明这些模型是预测测试集以及针对 FBPase 活性新设计结构的有用工具。在 FBPase 的受体部位叠加 CoMFA 模型,指导针对 FBPase 活性的潜在抑制结构的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验