Dept. Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra 0200, Australia.
J Struct Biol. 2011 May;174(2):290-5. doi: 10.1016/j.jsb.2011.01.004. Epub 2011 Jan 25.
The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer.
通过扫描电子显微镜和透射电子显微镜详细研究了蝴蝶 Callophrys rubi(绿长尾蛱蝶)翅膀鳞片中多孔三维网状图案的结构。对该材料的一部分进行的完整 3D 断层重建表明,主要由几丁质组成的物质在翅膀鳞片中组装成一种结构,其几何形状与众所周知的固体化学和软物质科学中的 srs 网具有显著的对应关系。多孔固体几乎完全由 Gyroid 的平行表面所限制,Gyroid 是具有立方晶体对称性 I4₁32 的三周期最小表面,如 Stavenga 和 Michielson 所预示的那样。结构的尺度与可见光的波长相当,平行 Gyroid 的常规立方单元的边缘约为 310nm。讨论了这种结构的成因,并提出它为通过软物质对手性材料进行模板化提供了一个显著的例子,类似于通过溶液中的表面活性剂组装形成介孔二氧化硅。在蝴蝶中,这种模板化是通过内质网中的脂质-蛋白质膜(当它仍在蛹中时)实现的,这些膜可能形成立方膜,根据 Gyroid 的形式折叠。随后,建议手性硬几丁质框架的形成是由几丁质前体的逐渐聚合驱动的,其在溶液中的固有手性组装(在生长过程中)促进了单一对映体的形成。