Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT 06511, USA.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11676-81. doi: 10.1073/pnas.0909616107. Epub 2010 Jun 14.
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
复杂的三维生物光子纳米结构产生了许多蝴蝶翅膀鳞片绚丽的结构色,但它们的确切纳米级组织尚不确定。我们使用小角 X 射线散射 (SAXS) 对单个鳞片进行了研究,以表征来自两个科(凤蝶科、蛱蝶科)的 5 种蝴蝶的三维光子纳米结构。我们将这些几丁质和空气纳米结构鉴定为单一网络回旋体(I4(1)32)光子晶体。我们从 SAXS 数据和光子带隙建模描述了它们的光学功能。蝴蝶显然通过利用生物类脂双层膜的自组织物理动力学来生长这些回旋体纳米结构。这些蝴蝶光子纳米结构最初在鳞片细胞内作为核壳双回旋体(Ia3d)发育,如在嵌段共聚物系统中所见,具有由细胞外空间、细胞膜、细胞质、光滑内质网膜和内质网腔组成的五连续体积。通过在细胞外空间沉积几丁质和使其余细胞退化,这种双回旋体纳米结构随后转化为单一回旋体网络。蝴蝶通过形成热力学有利的双回旋体前体来发展,这是一种光学上更有效的单一回旋体纳米结构的途径。目前用于光子晶体工程的方法也旨在产生单一回旋体图案。这里所描述的生物衍生光子纳米结构可能为基于仿生学或直接介电渗透的光学器件提供了一个方便的模板。