Suppr超能文献

蝴蝶鳞片中单网络介孔(I4132)光子晶体的结构、功能和自组装。

Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.

机构信息

Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT 06511, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11676-81. doi: 10.1073/pnas.0909616107. Epub 2010 Jun 14.

Abstract

Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.

摘要

复杂的三维生物光子纳米结构产生了许多蝴蝶翅膀鳞片绚丽的结构色,但它们的确切纳米级组织尚不确定。我们使用小角 X 射线散射 (SAXS) 对单个鳞片进行了研究,以表征来自两个科(凤蝶科、蛱蝶科)的 5 种蝴蝶的三维光子纳米结构。我们将这些几丁质和空气纳米结构鉴定为单一网络回旋体(I4(1)32)光子晶体。我们从 SAXS 数据和光子带隙建模描述了它们的光学功能。蝴蝶显然通过利用生物类脂双层膜的自组织物理动力学来生长这些回旋体纳米结构。这些蝴蝶光子纳米结构最初在鳞片细胞内作为核壳双回旋体(Ia3d)发育,如在嵌段共聚物系统中所见,具有由细胞外空间、细胞膜、细胞质、光滑内质网膜和内质网腔组成的五连续体积。通过在细胞外空间沉积几丁质和使其余细胞退化,这种双回旋体纳米结构随后转化为单一回旋体网络。蝴蝶通过形成热力学有利的双回旋体前体来发展,这是一种光学上更有效的单一回旋体纳米结构的途径。目前用于光子晶体工程的方法也旨在产生单一回旋体图案。这里所描述的生物衍生光子纳米结构可能为基于仿生学或直接介电渗透的光学器件提供了一个方便的模板。

相似文献

引用本文的文献

4
Hexagonal-Close-Packed Colloidal Crystals in Beetles.甲虫体内的六方密堆积胶体晶体
Small Sci. 2023 Aug 27;3(10):2200114. doi: 10.1002/smsc.202200114. eCollection 2023 Oct.
5
3D Chiral Photonic Nanostructures Based on Blue-Phase Liquid Crystals.基于蓝相液晶的3D手性光子纳米结构
Small Sci. 2021 May 5;1(6):2100007. doi: 10.1002/smsc.202100007. eCollection 2021 Jun.

本文引用的文献

5
Theory of transparency of the eye.眼的透明度理论
Appl Opt. 1971 Mar 1;10(3):459-73. doi: 10.1364/AO.10.000459.
9
Iridescence from photonic crystals and its suppression in butterfly scales.光子晶体产生的虹彩及其在蝴蝶鳞片中的抑制
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S233-42. doi: 10.1098/rsif.2008.0353.focus. Epub 2008 Nov 3.
10
Biomimetics of photonic nanostructures.光子纳米结构的仿生学
Nat Nanotechnol. 2007 Jun;2(6):347-53. doi: 10.1038/nnano.2007.152. Epub 2007 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验