Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Chemistry. 2011 Feb 7;17(6):1811-7. doi: 10.1002/chem.201002520. Epub 2011 Jan 12.
The absolute configuration of small crystallizable molecules can be determined with anomalous X-ray diffraction as shown by Bijvoet in 1951. For the majority of compounds that can neither be crystallized nor easily be converted into crystallizable derivatives, stereocontrolled organic synthesis is still required to establish their absolute configuration. In this contribution, a new fundamental methodology for resolving the absolute configuration will be presented that does not require crystallization. With residual dipolar coupling enhanced NMR spectroscopy, ensembles of a limited number of structures are created reflecting the correct conformations and relative configuration. Subsequently, from these ensembles, optical rotation dispersion (ORD) spectra are predicted by DFT calculations and compared to experimental results. The combination of these two steps reveals the absolute configuration of a flexible molecule in solution, which is a big challenge to chiroptical methods and DFT in the absence of NMR spectroscopy. Here the absolute stereochemistry of the product of a new Michael addition, synthesized via a niobium(V) chiral enolate, will be elucidated by using the new methodology.
1951 年,Bijvoet 通过异常 X 射线衍射证明,可对小分子晶体的绝对构型进行确定。对于大多数既不能结晶也不易转化为可结晶衍生物的化合物,仍需要进行立体控制的有机合成来确定其绝对构型。在本研究中,提出了一种新的基本方法,该方法不需要结晶即可解析绝对构型。通过残余偶极耦合增强 NMR 光谱,可创建数量有限的结构集合,反映正确的构象和相对构型。随后,通过 DFT 计算对这些集合进行预测,并与实验结果进行比较。这两个步骤的结合揭示了溶液中柔性分子的绝对构型,这对没有 NMR 光谱的手性方法和 DFT 来说是一个巨大的挑战。本研究将通过铌(V)手性烯醇盐合成的新型迈克尔加成产物的实例,阐明新方法的绝对立体化学。