一种改进的存在容积传导、噪声和样本大小偏差的电生理数据相位同步指数。
An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias.
机构信息
Cognitive and Systems Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, The Netherlands.
出版信息
Neuroimage. 2011 Apr 15;55(4):1548-65. doi: 10.1016/j.neuroimage.2011.01.055. Epub 2011 Jan 27.
Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals, however, volume conduction can cause the coherence and the phase locking value to spuriously increase. It has been shown that the imaginary component of the coherency (ImC) cannot be spuriously increased by volume-conduction of independent sources. Recently, it was proposed that the phase lag index (PLI), which estimates to what extent the phase leads and lags between signals from two sensors are nonequiprobable, improves on the ImC. Compared to ImC, PLI has the advantage of being less influenced by phase delays. However, sensitivity to volume-conduction and noise, and capacity to detect changes in phase-synchronization, is hindered by the discontinuity of the PLI, as small perturbations turn phase lags into leads and vice versa. To solve this problem, we introduce a related index, namely the weighted phase lag index (WPLI). Differently from PLI, in WPLI the contribution of the observed phase leads and lags is weighted by the magnitude of the imaginary component of the cross-spectrum. We demonstrate two advantages of the WPLI over the PLI, in terms of reduced sensitivity to additional, uncorrelated noise sources and increased statistical power to detect changes in phase-synchronization. Another factor that can affect phase-synchronization indices is sample-size bias. We show that, when directly estimated, both PLI and the magnitude of the ImC have typically positively biased estimators. To solve this problem, we develop an unbiased estimator of the squared PLI, and a debiased estimator of the squared WPLI.
相位同步是可从 LFP、EEG 或 MEG 信号测量到的神经元群相互作用的一种表现形式,然而,容积传导会导致相干性和相位锁定值虚假增加。已经表明,相干性的虚部(ImC)不能通过独立源的容积传导虚假增加。最近,有人提出相位滞后指数(PLI),它估计两个传感器之间的信号的相位领先和滞后程度是非等概率的,这改进了 ImC。与 ImC 相比,PLI 的优势在于受相位延迟的影响较小。然而,对容积传导和噪声的敏感性以及检测相位同步变化的能力受到 PLI 的不连续性的阻碍,因为小的扰动会将相位滞后转变为相位领先,反之亦然。为了解决这个问题,我们引入了一个相关的指数,即加权相位滞后指数(WPLI)。与 PLI 不同,在 WPLI 中,观察到的相位领先和滞后的贡献由交叉谱的虚部的大小加权。我们展示了 WPLI 相对于 PLI 的两个优势,即在对额外的不相关噪声源的敏感性降低和检测相位同步变化的统计能力提高方面。另一个可能影响相位同步指数的因素是样本大小偏差。我们表明,当直接估计时,PLI 和 ImC 的大小通常具有正偏差估计器。为了解决这个问题,我们开发了平方 PLI 的无偏估计器和平方 WPLI 的去偏估计器。