文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于从多通道脑电图和脑磁图推断功能连接性的基准指标:一项模拟研究。

Benchmarking metrics for inferring functional connectivity from multi-channel EEG and MEG: A simulation study.

作者信息

Yu Meichen

机构信息

Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

出版信息

Chaos. 2020 Dec;30(12):123124. doi: 10.1063/5.0018826.


DOI:10.1063/5.0018826
PMID:33380013
Abstract

I present a systematic evaluation of different types of metrics, for inferring magnitude, amplitude, or phase synchronization from the electroencephalogram (EEG) and the magnetoencephalogram (MEG). I used a biophysical model, generating EEG/MEG-like signals, together with a system of two coupled self-sustained chaotic oscillators, containing clear transitions from phase to amplitude synchronization solely modulated by coupling strength. Specifically, I compared metrics according to five benchmarks for assessing different types of reliability factors, including immunity to spatial leakage, test-retest reliability, and sensitivity to noise, coupling strength, and synchronization transition. My results delineate the heterogeneous reliability of widely used connectivity metrics, including two magnitude synchronization metrics [coherence (Coh) and imaginary part of coherence (ImCoh)], two amplitude synchronization metrics [amplitude envelope correlation (AEC) and corrected amplitude envelope correlation (AEC)], and three phase synchronization metrics [phase coherence (PCoh), phase lag index (PLI), and weighted PLI (wPLI)]. First, the Coh, AEC, and PCoh were prone to create spurious connections caused by spatial leakage. Therefore, they are not recommended to be applied to real EEG/MEG data. The ImCoh, AEC, PLI, and wPLI were less affected by spatial leakage. The PLI and wPLI showed the highest immunity to spatial leakage. Second, the PLI and wPLI showed higher test-retest reliability and higher sensitivity to coupling strength and synchronization transition than the ImCoh and AEC. Third, the AEC was less noisy than the ImCoh, PLI, and wPLI. In sum, my work shows that the choice of connectivity metric should be determined after a comprehensive consideration of the aforementioned five reliability factors.

摘要

我对不同类型的指标进行了系统评估,用于从脑电图(EEG)和脑磁图(MEG)推断幅度、振幅或相位同步。我使用了一个生物物理模型,生成类似EEG/MEG的信号,以及一个由两个耦合的自持混沌振荡器组成的系统,该系统包含仅由耦合强度调制的从相位同步到振幅同步的清晰转变。具体而言,我根据五个基准比较了指标,以评估不同类型的可靠性因素,包括对空间泄漏的免疫性、重测可靠性以及对噪声、耦合强度和同步转变的敏感性。我的结果描绘了广泛使用的连通性指标的异质性可靠性,包括两个幅度同步指标[相干性(Coh)和相干性的虚部(ImCoh)]、两个振幅同步指标[振幅包络相关性(AEC)和校正后的振幅包络相关性(AEC)]以及三个相位同步指标[相位相干性(PCoh)、相位滞后指数(PLI)和加权PLI(wPLI)]。首先,Coh、AEC和PCoh容易因空间泄漏而产生虚假连接。因此,不建议将它们应用于真实的EEG/MEG数据。ImCoh、AEC、PLI和wPLI受空间泄漏的影响较小。PLI和wPLI对空间泄漏的免疫性最高。其次,PLI和wPLI显示出比ImCoh和AEC更高的重测可靠性以及对耦合强度和同步转变更高的敏感性。第三,AEC比ImCoh、PLI和wPLI的噪声更小。总之,我的工作表明,连通性指标的选择应在全面考虑上述五个可靠性因素后确定。

相似文献

[1]
Benchmarking metrics for inferring functional connectivity from multi-channel EEG and MEG: A simulation study.

Chaos. 2020-12

[2]
Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources.

Hum Brain Mapp. 2007-11

[3]
Test-Retest Reliability of Magnetoencephalography Resting-State Functional Connectivity in Schizophrenia.

Front Psychiatry. 2020-12-16

[4]
Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG.

PLoS One. 2014-10-6

[5]
Comparison of Phase Synchronization Measures for Identifying Stimulus-Induced Functional Connectivity in Human Magnetoencephalographic and Simulated Data.

Front Neurosci. 2020-6-19

[6]
Analysis of Volume Conduction Effects on Different Functional Connectivity Metrics: Application to Alzheimer's Disease EEG Signals.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[7]
An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias.

Neuroimage. 2011-1-27

[8]
Differential classification of states of consciousness using envelope- and phase-based functional connectivity.

Neuroimage. 2021-8-15

[9]
Computational modeling of the effects of EEG volume conduction on functional connectivity metrics. Application to Alzheimer's disease continuum.

J Neural Eng. 2019-10-29

[10]
Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer's disease.

Alzheimers Res Ther. 2022-2-26

引用本文的文献

[1]
Predicting antidepressant responsiveness in major depressive disorder patients via electroencephalography gamma-band dynamic functional connectivity in response to salient auditory stimuli.

Int J Neuropsychopharmacol. 2025-7-23

[2]
A Novel Working Memory Task-Induced EEG Response (WM-TIER) Feature Extraction Framework for Detecting Alzheimer's Disease and Mild Cognitive Impairment.

Biosensors (Basel). 2025-5-4

[3]
Classification of internet addiction using machine learning on electroencephalography synchronization and functional connectivity.

Psychol Med. 2025-5-16

[4]
The relationship between neuromagnetic networks and cognitive impairment in self-limited epilepsy with centrotemporal spikes.

Epilepsia Open. 2025-6

[5]
Prediction of pharmacological treatment efficacy using electroencephalography-based salience network in patients with major depressive disorder.

Front Psychiatry. 2024-10-17

[6]
The effects of spatial leakage correction on the reliability of EEG-based functional connectivity networks.

Hum Brain Mapp. 2024-6-1

[7]
Network Hyperexcitability in Early-Stage Alzheimer's Disease: Evaluation of Functional Connectivity Biomarkers in a Computational Disease Model.

J Alzheimers Dis. 2024

[8]
Multiplex dynamic networks in the newborn brain disclose latent links with neurobehavioral phenotypes.

Hum Brain Mapp. 2024-2-1

[9]
The human connectome in Alzheimer disease - relationship to biomarkers and genetics.

Nat Rev Neurol. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索