Yu Meichen
Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
Chaos. 2020 Dec;30(12):123124. doi: 10.1063/5.0018826.
I present a systematic evaluation of different types of metrics, for inferring magnitude, amplitude, or phase synchronization from the electroencephalogram (EEG) and the magnetoencephalogram (MEG). I used a biophysical model, generating EEG/MEG-like signals, together with a system of two coupled self-sustained chaotic oscillators, containing clear transitions from phase to amplitude synchronization solely modulated by coupling strength. Specifically, I compared metrics according to five benchmarks for assessing different types of reliability factors, including immunity to spatial leakage, test-retest reliability, and sensitivity to noise, coupling strength, and synchronization transition. My results delineate the heterogeneous reliability of widely used connectivity metrics, including two magnitude synchronization metrics [coherence (Coh) and imaginary part of coherence (ImCoh)], two amplitude synchronization metrics [amplitude envelope correlation (AEC) and corrected amplitude envelope correlation (AEC)], and three phase synchronization metrics [phase coherence (PCoh), phase lag index (PLI), and weighted PLI (wPLI)]. First, the Coh, AEC, and PCoh were prone to create spurious connections caused by spatial leakage. Therefore, they are not recommended to be applied to real EEG/MEG data. The ImCoh, AEC, PLI, and wPLI were less affected by spatial leakage. The PLI and wPLI showed the highest immunity to spatial leakage. Second, the PLI and wPLI showed higher test-retest reliability and higher sensitivity to coupling strength and synchronization transition than the ImCoh and AEC. Third, the AEC was less noisy than the ImCoh, PLI, and wPLI. In sum, my work shows that the choice of connectivity metric should be determined after a comprehensive consideration of the aforementioned five reliability factors.
我对不同类型的指标进行了系统评估,用于从脑电图(EEG)和脑磁图(MEG)推断幅度、振幅或相位同步。我使用了一个生物物理模型,生成类似EEG/MEG的信号,以及一个由两个耦合的自持混沌振荡器组成的系统,该系统包含仅由耦合强度调制的从相位同步到振幅同步的清晰转变。具体而言,我根据五个基准比较了指标,以评估不同类型的可靠性因素,包括对空间泄漏的免疫性、重测可靠性以及对噪声、耦合强度和同步转变的敏感性。我的结果描绘了广泛使用的连通性指标的异质性可靠性,包括两个幅度同步指标[相干性(Coh)和相干性的虚部(ImCoh)]、两个振幅同步指标[振幅包络相关性(AEC)和校正后的振幅包络相关性(AEC)]以及三个相位同步指标[相位相干性(PCoh)、相位滞后指数(PLI)和加权PLI(wPLI)]。首先,Coh、AEC和PCoh容易因空间泄漏而产生虚假连接。因此,不建议将它们应用于真实的EEG/MEG数据。ImCoh、AEC、PLI和wPLI受空间泄漏的影响较小。PLI和wPLI对空间泄漏的免疫性最高。其次,PLI和wPLI显示出比ImCoh和AEC更高的重测可靠性以及对耦合强度和同步转变更高的敏感性。第三,AEC比ImCoh、PLI和wPLI的噪声更小。总之,我的工作表明,连通性指标的选择应在全面考虑上述五个可靠性因素后确定。
Front Psychiatry. 2020-12-16
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Alzheimers Res Ther. 2022-2-26
Nat Rev Neurol. 2021-9