Suppr超能文献

超图划分的无监督图像分类。

Unsupervised image categorization by hypergraph partition.

机构信息

Department of Computer Science, Rutgers University at New Brunswick, Piscataway, NJ 08854, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Jun;33(6):1266-73. doi: 10.1109/TPAMI.2011.25.

Abstract

We present a framework for unsupervised image categorization in which images containing specific objects are taken as vertices in a hypergraph and the task of image clustering is formulated as the problem of hypergraph partition. First, a novel method is proposed to select the region of interest (ROI) of each image, and then hyperedges are constructed based on shape and appearance features extracted from the ROIs. Each vertex (image) and its k-nearest neighbors (based on shape or appearance descriptors) form two kinds of hyperedges. The weight of a hyperedge is computed as the sum of the pairwise affinities within the hyperedge. Through all of the hyperedges, not only the local grouping relationships among the images are described, but also the merits of the shape and appearance characteristics are integrated together to enhance the clustering performance. Finally, a generalized spectral clustering technique is used to solve the hypergraph partition problem. We compare the proposed method to several methods and its effectiveness is demonstrated by extensive experiments on three image databases.

摘要

我们提出了一种无监督图像分类的框架,其中包含特定对象的图像被视为超图中的顶点,并且图像聚类的任务被表述为超图划分的问题。首先,提出了一种新的方法来选择每个图像的感兴趣区域(ROI),然后基于从 ROIs 中提取的形状和外观特征来构建超边。每个顶点(图像)及其 k-最近邻居(基于形状或外观描述符)形成两种类型的超边。超边的权重计算为超边内的成对相似性的总和。通过所有的超边,不仅描述了图像之间的局部分组关系,而且还集成了形状和外观特征的优点,以增强聚类性能。最后,使用广义谱聚类技术来解决超图划分问题。我们将所提出的方法与几种方法进行了比较,并通过在三个图像数据库上的广泛实验证明了其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验