Suppr超能文献

通过稀疏超图学习识别与疾病相关的子网连接组学生物标志物。

Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning.

机构信息

Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Brain Imaging Behav. 2019 Aug;13(4):879-892. doi: 10.1007/s11682-018-9899-8.

Abstract

The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or subnetwork for short. To overcome this current limitation, a hypergraph learning-based method is proposed to identify subnetwork differences between two different cohorts. To achieve our goal, a hypergraph is constructed, where each vertex represents a subject and also a hyperedge encodes a subnetwork with similar functional connectivity patterns between different subjects. Unlike previous learning-based methods, our approach is designed to jointly optimize the weights for all hyperedges such that the learned representation is in consensus with the distribution of phenotype data, i.e. clinical labels. In order to suppress the spurious subnetwork biomarkers, we further enforce a sparsity constraint on the hyperedge weights, where a larger hyperedge weight indicates the subnetwork with the capability of identifying the disorder condition. We apply our hypergraph learning-based method to identify subnetwork biomarkers in Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). A comprehensive quantitative and qualitative analysis is performed, and the results show that our approach can correctly classify ASD and ADHD subjects from normal controls with 87.65 and 65.08% accuracies, respectively.

摘要

功能脑网络因其能够揭示人类大脑的潜在结构而在神经科学界受到越来越多的关注。通常,功能网络连通性的大多数工作都是基于离散时间序列信号之间的相关性构建的,这些信号仅连接两个不同的大脑区域。然而,这些简单的区域间连通性模型无法捕捉到形成连通子网或简称子网的三个或更多大脑区域之间的复杂连通模式。为了克服这一当前的局限性,提出了一种基于超图学习的方法来识别两个不同队列之间的子网差异。为了实现我们的目标,构建了一个超图,其中每个顶点代表一个主体,并且超边编码具有不同主体之间相似功能连通模式的子网。与以前的基于学习的方法不同,我们的方法旨在共同优化所有超边的权重,以使学习到的表示与表型数据(即临床标签)的分布一致。为了抑制虚假子网生物标志物,我们进一步对超边权重施加稀疏性约束,其中较大的超边权重表示具有识别障碍条件的子网。我们将基于超图学习的方法应用于识别自闭症谱系障碍(ASD)和注意缺陷多动障碍(ADHD)中的子网生物标志物。进行了全面的定量和定性分析,结果表明,我们的方法可以分别以 87.65%和 65.08%的准确率正确地将 ASD 和 ADHD 受试者从正常对照组中分类。

相似文献

2
Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph.通过超图学习识别高阶脑连接组生物标志物。
Mach Learn Med Imaging. 2016 Oct;10019:1-9. doi: 10.1007/978-3-319-47157-0_1. Epub 2016 Oct 1.

引用本文的文献

1
Hypergraph reconstruction from dynamics.基于动力学的超图重构
Nat Commun. 2025 Mar 19;16(1):2691. doi: 10.1038/s41467-025-57664-2.
5
Multimodal Feature Fusion Based Hypergraph Learning Model.基于多模态特征融合的超图学习模型。
Comput Intell Neurosci. 2022 May 16;2022:9073652. doi: 10.1155/2022/9073652. eCollection 2022.
10
Constructing Connectome Atlas by Graph Laplacian Learning.通过图拉普拉斯学习构建连接体图谱。
Neuroinformatics. 2021 Apr;19(2):233-249. doi: 10.1007/s12021-020-09482-8.

本文引用的文献

1
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.
2
Medical Image Retrieval Using Multi-graph Learning for MCI Diagnostic Assistance.使用多图学习辅助轻度认知障碍诊断的医学图像检索
Med Image Comput Comput Assist Interv. 2015 Oct;9350:86-93. doi: 10.1007/978-3-319-24571-3_11. Epub 2015 Nov 20.
3
MCI Identification by Joint Learning on Multiple MRI Data.基于多模态磁共振成像数据联合学习的轻度认知障碍识别
Med Image Comput Comput Assist Interv. 2015 Oct;9350:78-85. doi: 10.1007/978-3-319-24571-3_10. Epub 2015 Nov 20.
4
Brain network adaptability across task states.跨任务状态的脑网络适应性。
PLoS Comput Biol. 2015 Jan 8;11(1):e1004029. doi: 10.1371/journal.pcbi.1004029. eCollection 2015 Jan.
9
3-D object retrieval and recognition with hypergraph analysis.基于超图分析的三维目标检索与识别。
IEEE Trans Image Process. 2012 Sep;21(9):4290-303. doi: 10.1109/TIP.2012.2199502. Epub 2012 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验