Suppr超能文献

人胚胎干细胞源性间充质细胞的微血管壁细胞功能。

Microvascular mural cell functionality of human embryonic stem cell-derived mesenchymal cells.

机构信息

Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky 40202, USA.

出版信息

Tissue Eng Part A. 2011 Jun;17(11-12):1537-48. doi: 10.1089/ten.TEA.2010.0397. Epub 2011 Mar 4.

Abstract

Microvascular mural or perivascular cells are required for the stabilization and maturation of the remodeling vasculature. However, much less is known about their biology and function compared to large vessel smooth muscle cells. We have developed lines of multipotent mesenchymal cells from human embryonic stem cells (hES-MC); we hypothesize that these can function as perivascular mural cells. Here we show that the derived cells do not form teratomas in SCID mice and independently derived lines show similar patterns of gene expression by microarray analysis. When exposed to platelet-derived growth factor-BB, the platelet-derived growth factor receptor β is activated and hES-MC migrate in response to a gradient. We also show that in a serum-free medium, transforming growth factor β1 (TGFβ1) induces robust expression of multiple contractile proteins (α smooth muscle actin, smooth muscle myosin heavy chain, smooth muscle 22α, and calponin). TGFβ1 signaling is mediated through the TGFβR1/Alk5 pathway as demonstrated by inhibition of α smooth muscle actin expression by treatment of the Alk5-specific inhibitor SB525334 and stable retroviral expression of the Alk5 dominant negative (K232R). Coculture of human umbilical vein endothelial cell (HUVEC) with hES-MC maintains network integrity compared to HUVEC alone in three-dimensional collagen I-fibronectin by paracrine signaling. Using high-resolution laser confocal microscopy, we show that hES-MC also make direct contact with HUVEC. This demonstrates that hESC-derived mesenchymal cells possess the molecular machinery expected in a perivascular progenitor cells and can play a functional role in stabilizing EC networks in in vitro three-dimensional culture.

摘要

微血管周细胞或壁细胞对于重塑血管的稳定和成熟是必需的。然而,与大血管平滑肌细胞相比,人们对其生物学和功能的了解要少得多。我们已经从人胚胎干细胞(hES-MC)中开发出多能间充质细胞系;我们假设这些细胞可以作为血管壁细胞。在这里,我们表明衍生细胞在 SCID 小鼠中不会形成畸胎瘤,并且通过微阵列分析独立衍生的细胞系显示出相似的基因表达模式。当暴露于血小板衍生生长因子-BB 时,血小板衍生生长因子受体β被激活,hES-MC 会响应梯度迁移。我们还表明,在无血清培养基中,转化生长因子β 1(TGFβ1)会诱导多种收缩蛋白(α平滑肌肌动蛋白、平滑肌肌球蛋白重链、平滑肌 22α 和钙调蛋白)的强烈表达。TGFβ1 信号通过 TGFβR1/Alk5 途径介导,如通过用 Alk5 特异性抑制剂 SB525334 处理和稳定转染 Alk5 显性负(K232R)抑制α平滑肌肌动蛋白表达所证明的。与单独的 HUVEC 相比,与人脐静脉内皮细胞(HUVEC)共培养的 hES-MC 通过旁分泌信号在三维胶原 I-纤维连接蛋白中维持网络完整性。使用高分辨率激光共聚焦显微镜,我们表明 hES-MC 还与 HUVEC 直接接触。这表明 hESC 衍生的间充质细胞具有血管周细胞祖细胞中预期的分子机制,并可以在体外三维培养中发挥稳定 EC 网络的功能作用。

相似文献

1
Microvascular mural cell functionality of human embryonic stem cell-derived mesenchymal cells.
Tissue Eng Part A. 2011 Jun;17(11-12):1537-48. doi: 10.1089/ten.TEA.2010.0397. Epub 2011 Mar 4.
3
Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells.
Tissue Eng Part A. 2009 Aug;15(8):1897-907. doi: 10.1089/ten.tea.2008.0351.
4
Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A.
Circ Res. 2014 Oct 10;115(9):800-9. doi: 10.1161/CIRCRESAHA.115.304026. Epub 2014 Aug 11.
6
The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture.
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1396-407. doi: 10.1152/ajpcell.00168.2005. Epub 2005 Aug 3.
7
Transforming growth factor-beta1 causes pulmonary microvascular endothelial cell apoptosis via ALK5.
Am J Physiol Lung Cell Mol Physiol. 2009 May;296(5):L825-38. doi: 10.1152/ajplung.90307.2008. Epub 2009 Mar 6.

引用本文的文献

2
Limbal niche cells are a potent resource of adult mesenchymal progenitors.
J Cell Mol Med. 2018 Jul;22(7):3315-3322. doi: 10.1111/jcmm.13635. Epub 2018 Apr 20.
3
Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.
PLoS One. 2016 Mar 10;11(3):e0151402. doi: 10.1371/journal.pone.0151402. eCollection 2016.
5
Microfluidic techniques for development of 3D vascularized tissue.
Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.
6
Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.
PLoS One. 2013 Dec 30;8(12):e83755. doi: 10.1371/journal.pone.0083755. eCollection 2013.
7
Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells.
Tissue Eng Part A. 2014 Feb;20(3-4):740-50. doi: 10.1089/ten.TEA.2012.0738.
8
9
Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells.
Tissue Eng Part A. 2014 Jan;20(1-2):365-77. doi: 10.1089/ten.TEA.2013.0321. Epub 2013 Oct 4.

本文引用的文献

1
Implanted microvessels progress through distinct neovascularization phenotypes.
Microvasc Res. 2010 Jan;79(1):10-20. doi: 10.1016/j.mvr.2009.10.001. Epub 2009 Oct 13.
3
Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells.
Tissue Eng Part A. 2009 Aug;15(8):1897-907. doi: 10.1089/ten.tea.2008.0351.
4
A perivascular origin for mesenchymal stem cells in multiple human organs.
Cell Stem Cell. 2008 Sep 11;3(3):301-13. doi: 10.1016/j.stem.2008.07.003.
5
Pericytes: pluripotent cells of the blood brain barrier.
Curr Pharm Des. 2008;14(16):1581-93. doi: 10.2174/138161208784705469.
6
Effect of mechanical boundary conditions on orientation of angiogenic microvessels.
Cardiovasc Res. 2008 May 1;78(2):324-32. doi: 10.1093/cvr/cvn055. Epub 2008 Feb 28.
7
Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs).
FASEB J. 2008 Jun;22(6):1635-48. doi: 10.1096/fj.07-087924. Epub 2008 Jan 16.
8
Tissue engineering: perspectives, challenges, and future directions.
Tissue Eng. 2007 Jan;13(1):1-2. doi: 10.1089/ten.2006.0219.
10
Endothelial/pericyte interactions.
Circ Res. 2005 Sep 16;97(6):512-23. doi: 10.1161/01.RES.0000182903.16652.d7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验