Suppr超能文献

用于三维血管化组织发育的微流控技术

Microfluidic techniques for development of 3D vascularized tissue.

作者信息

Hasan Anwarul, Paul Arghya, Vrana Nihal E, Zhao Xin, Memic Adnan, Hwang Yu-Shik, Dokmeci Mehmet R, Khademhosseini Ali

机构信息

Biomedical Engineering, and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

出版信息

Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.

Abstract

Development of a vascularized tissue is one of the key challenges for the successful clinical application of tissue engineered constructs. Despite the significant efforts over the last few decades, establishing a gold standard to develop three dimensional (3D) vascularized tissues has still remained far from reality. Recent advances in the application of microfluidic platforms to the field of tissue engineering have greatly accelerated the progress toward the development of viable vascularized tissue constructs. Numerous techniques have emerged to induce the formation of vascular structure within tissues which can be broadly classified into two distinct categories, namely (1) prevascularization-based techniques and (2) vasculogenesis and angiogenesis-based techniques. This review presents an overview of the recent advancements in the vascularization techniques using both approaches for generating 3D vascular structure on microfluidic platforms.

摘要

构建血管化组织是组织工程构建体成功临床应用的关键挑战之一。尽管在过去几十年中付出了巨大努力,但建立一个开发三维(3D)血管化组织的金标准仍远未实现。微流控平台在组织工程领域应用的最新进展极大地加速了可行的血管化组织构建体的开发进程。已经出现了许多诱导组织内血管结构形成的技术,这些技术大致可分为两类,即(1)基于预血管化的技术和(2)基于血管发生和血管生成的技术。本文综述了利用这两种方法在微流控平台上生成3D血管结构的血管化技术的最新进展。

相似文献

1
Microfluidic techniques for development of 3D vascularized tissue.用于三维血管化组织发育的微流控技术
Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.
2
In Vitro Strategies to Vascularize 3D Physiologically Relevant Models.体外策略使 3D 生理相关模型血管化。
Adv Sci (Weinh). 2021 Oct;8(19):e2100798. doi: 10.1002/advs.202100798. Epub 2021 Aug 5.
3
Bioprinting for vascular and vascularized tissue biofabrication.用于血管和血管化组织生物制造的生物打印
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.
5
Multiscale bioprinting of vascularized models.多尺度生物打印血管化模型。
Biomaterials. 2019 Apr;198:204-216. doi: 10.1016/j.biomaterials.2018.08.006. Epub 2018 Aug 3.
10
Immunoassays in microfluidic systems.微流控系统中的免疫分析。
Anal Bioanal Chem. 2010 Jun;397(3):991-1007. doi: 10.1007/s00216-010-3678-8. Epub 2010 Apr 27.

引用本文的文献

4
Bio-inspired microfluidics: A review.受生物启发的微流体学:综述
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
5
Building Blood Vessel Chips with Enhanced Physiological Relevance.构建具有更高生理相关性的血管芯片
Adv Mater Technol. 2023 Apr 6;8(7). doi: 10.1002/admt.202201778. Epub 2023 Feb 3.
8
Realizations of vascularized tissues: From platforms to grafts.血管化组织的实现:从平台到移植物。
Biophys Rev (Melville). 2023 Mar;4(1):011308. doi: 10.1063/5.0131972. Epub 2023 Mar 13.
10
3D skin bioprinting: future potential for skin regeneration.3D皮肤生物打印:皮肤再生的未来潜力。
Postepy Dermatol Alergol. 2022 Oct;39(5):845-851. doi: 10.5114/ada.2021.109692. Epub 2021 Oct 4.

本文引用的文献

5
Electrospun scaffolds for tissue engineering of vascular grafts.用于血管移植物组织工程的静电纺丝支架。
Acta Biomater. 2014 Jan;10(1):11-25. doi: 10.1016/j.actbio.2013.08.022. Epub 2013 Aug 22.
6
Bio-orthogonal and combinatorial approaches for the design of binding growth factors.生物正交与组合方法设计结合生长因子。
Biomaterials. 2013 Oct;34(31):7565-74. doi: 10.1016/j.biomaterials.2013.06.037. Epub 2013 Jul 13.
9
The future of the patient-specific Body-on-a-chip.患者特异性类器官芯片的未来。
Lab Chip. 2013 Sep 21;13(18):3471-80. doi: 10.1039/c3lc50237f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验