Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
Proteins. 2011 Mar;79(3):916-24. doi: 10.1002/prot.22930. Epub 2010 Dec 22.
Increasing awareness of the possible role of internal dynamics in protein function has led to the development of new methods for experimentally characterizing protein dynamics across multiple time scales, especially using NMR spectroscopy. A few analyses of the conformational dynamics of proteins ranging from nonallosteric single domains to multidomain allosteric enzymes are now available; however, demonstrating a connection between dynamics and function remains difficult on account of the comparative lack of studies examining both changes in dynamics and changes in function in response to the same perturbations. In previous work, we characterized changes in structure and dynamics on the ps–ns time scale resulting from hydrophobic core mutations in chymotrypsin inhibitor 2 and found that there are moderate, persistent global changes in dynamics in the absence of gross structural changes (Whitley et al., Biochemistry 2008;47:8566–8576). Here, we assay those and additional mutants for inhibitory ability toward the serine proteases elastase and chymotrypsin to determine the effects of mutation on function. Results indicate that core mutation has only a subtle effect on CI2 function. Using chemical shifts, we also studied the effect of complex formation on CI2 structure and found that perturbations are greatest at the complex interface but also propagate toward CI2's hydrophobic core. The structure–dynamics–function data set completed here suggests that dynamics plays a limited role in the function of this small model system, although we do observe a correlation between nanosecond-scale reactive loop motions and inhibitory ability for mutations at one key position in the hydrophobic core.
提高对蛋白质功能中内部动力学可能作用的认识,促使人们开发出了新的方法,以便在多个时间尺度上对蛋白质动力学进行实验表征,尤其是利用 NMR 光谱法。现在已经有一些对从非别构单域到多域别构酶的蛋白质构象动力学的分析,但由于缺乏同时研究动力学变化和响应相同扰动时功能变化的研究,因此仍然难以证明动力学与功能之间存在联系。在之前的工作中,我们研究了糜蛋白酶抑制剂 2 中的疏水性核心突变导致的 ps-ns 时间尺度的结构和动力学变化,发现即使没有明显的结构变化,动力学也存在适度的、持久的全局变化(Whitley 等人, Biochemistry 2008;47:8566-8576)。在这里,我们针对弹性蛋白酶和糜蛋白酶对那些和另外一些突变体进行了抑制能力检测,以确定突变对功能的影响。结果表明,核心突变对 CI2 的功能只有细微的影响。我们还利用化学位移研究了复合物形成对 CI2 结构的影响,发现扰动在复合物界面处最大,但也会向 CI2 的疏水性核心传播。在这里完成的结构-动力学-功能数据集表明,尽管我们确实观察到在疏水性核心的一个关键位置的突变的纳秒级反应环运动与抑制能力之间存在相关性,但动力学在这个小型模型系统的功能中只起着有限的作用。