Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5 Pushchino, Moscow region 142290, Russia.
BMC Evol Biol. 2011 Feb 3;11:35. doi: 10.1186/1471-2148-11-35.
The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems.
Fusion of eco29kIR and M ORFs gave a novel gene encoding for a fully functional hybrid polypeptide that carried both restriction endonuclease and DNA methyltransferase activities. It has been placed into a subclass of type II restriction and modification enzymes--type IIC. Its MTase activity, 80% that of the M.Eco29kI enzyme, remained almost unchanged, while its REase activity decreased by three times, concurrently with changed reaction optima, which presumably can be caused by increased steric hindrance in interaction with the substrate. In vitro the enzyme preferentially cuts DNA, with only a low level of DNA modification detected. In vivo new RMS can provide a 102-fold less protection of host cells against phage invasion.
We propose a molecular mechanism of appearing of type IIC restriction-modification and M.SsoII-related enzymes, as well as other multifunctional proteins. As shown, gene fusion could play an important role in evolution of restriction-modification systems and be responsible for the enzyme subclass interconversion. Based on the proposed approach, hundreds of new type IIC enzymes can be generated using head-to-tail oriented type I, II, and III restriction and modification genes. These bifunctional polypeptides can serve a basis for enzymes with altered recognition specificities. Lastly, this study demonstrates that protein fusion may change biochemical properties of the involved enzymes, thus giving a starting point for their further evolutionary divergence.
限制性内切酶和修饰 DNA 甲基转移酶的发现,是基因工程的关键工具,通过重组 DNA 技术的发展,开创了分子生物学的新时代。如今,仅分配给 II 型限制酶的潜在蛋白质数量就超过了 6000 种,这可能反映了进化途径的高度多样性。在这里,我们提供了实验证据,证明具有单个多肽中两种活性的新型 IIC 型限制修饰酶可能是由来自现有二分位限制修饰系统的适当基因融合产生的。
将 eco29kIR 和 M ORFs 融合,得到了一个新的基因,该基因编码一种具有完整功能的杂合多肽,该多肽具有限制内切酶和 DNA 甲基转移酶两种活性。它已被归入 II 型限制修饰酶的一个亚类——IIC 型。其 MTase 活性为 M.Eco29kI 酶的 80%,几乎保持不变,而其 REase 活性降低了三倍,同时反应最佳值也发生了变化,这可能是由于与底物相互作用时的空间位阻增加所致。在体外,该酶优先切割 DNA,仅检测到低水平的 DNA 修饰。在体内,新的 RMS 可以为宿主细胞提供对噬菌体入侵的保护作用降低 102 倍。
我们提出了一种 IIC 型限制修饰酶和 M.SsoII 相关酶以及其他多功能蛋白出现的分子机制。如前所述,基因融合可能在限制修饰系统的进化中发挥重要作用,并负责酶亚类的转换。基于所提出的方法,可以使用头对头定向的 I、II 和 III 型限制和修饰基因生成数百种新的 IIC 酶。这些双功能多肽可以作为改变识别特异性的酶的基础。最后,本研究表明,蛋白质融合可能会改变所涉及酶的生化特性,从而为它们的进一步进化分化提供起点。