Suppr超能文献

利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。

Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.

机构信息

Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.

出版信息

IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

Abstract

We introduce a novel algorithm to reconstruct dynamic magnetic resonance imaging (MRI) data from under-sampled k-t space data. In contrast to classical model based cine MRI schemes that rely on the sparsity or banded structure in Fourier space, we use the compact representation of the data in the Karhunen Louve transform (KLT) domain to exploit the correlations in the dataset. The use of the data-dependent KL transform makes our approach ideally suited to a range of dynamic imaging problems, even when the motion is not periodic. In comparison to current KLT-based methods that rely on a two-step approach to first estimate the basis functions and then use it for reconstruction, we pose the problem as a spectrally regularized matrix recovery problem. By simultaneously determining the temporal basis functions and its spatial weights from the entire measured data, the proposed scheme is capable of providing high quality reconstructions at a range of accelerations. In addition to using the compact representation in the KLT domain, we also exploit the sparsity of the data to further improve the recovery rate. Validations using numerical phantoms and in vivo cardiac perfusion MRI data demonstrate the significant improvement in performance offered by the proposed scheme over existing methods.

摘要

我们提出了一种新的算法,用于从欠采样 k-t 空间数据重建动态磁共振成像 (MRI) 数据。与依赖傅里叶空间稀疏性或带结构的经典基于模型的电影 MRI 方案不同,我们使用 Karhunen Louve 变换 (KLT) 域中数据的紧凑表示来利用数据集的相关性。数据相关的 KL 变换的使用使我们的方法非常适合一系列动态成像问题,即使运动不是周期性的。与当前基于 KLT 的方法相比,这些方法依赖于两步方法,首先估计基函数,然后用于重建,我们将问题表述为一个谱正则化矩阵恢复问题。通过从整个测量数据中同时确定时间基函数及其空间权重,所提出的方案能够在各种加速度下提供高质量的重建。除了使用 KLT 域中的紧凑表示外,我们还利用数据的稀疏性进一步提高恢复率。使用数值体模和体内心脏灌注 MRI 数据进行验证表明,与现有方法相比,所提出的方案在性能方面有显著提高。

相似文献

1
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.
3
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
8
Real time dynamic MRI with dynamic total variation.具有动态全变差的实时动态磁共振成像
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):138-45. doi: 10.1007/978-3-319-10404-1_18.
9
Exploiting the wavelet structure in compressed sensing MRI.利用压缩感知磁共振成像中的小波结构。
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.

引用本文的文献

本文引用的文献

2
An algorithm for sparse MRI reconstruction by Schatten p-norm minimization.基于 Schatten p-范数最小化的稀疏 MRI 重建算法。
Magn Reson Imaging. 2011 Apr;29(3):408-17. doi: 10.1016/j.mri.2010.09.001. Epub 2010 Oct 16.
5
Real-time cardiac MRI using prior spatial-spectral information.利用先验空间光谱信息的实时心脏磁共振成像
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4383-6. doi: 10.1109/IEMBS.2009.5333482.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验