Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.
We introduce a novel algorithm to reconstruct dynamic magnetic resonance imaging (MRI) data from under-sampled k-t space data. In contrast to classical model based cine MRI schemes that rely on the sparsity or banded structure in Fourier space, we use the compact representation of the data in the Karhunen Louve transform (KLT) domain to exploit the correlations in the dataset. The use of the data-dependent KL transform makes our approach ideally suited to a range of dynamic imaging problems, even when the motion is not periodic. In comparison to current KLT-based methods that rely on a two-step approach to first estimate the basis functions and then use it for reconstruction, we pose the problem as a spectrally regularized matrix recovery problem. By simultaneously determining the temporal basis functions and its spatial weights from the entire measured data, the proposed scheme is capable of providing high quality reconstructions at a range of accelerations. In addition to using the compact representation in the KLT domain, we also exploit the sparsity of the data to further improve the recovery rate. Validations using numerical phantoms and in vivo cardiac perfusion MRI data demonstrate the significant improvement in performance offered by the proposed scheme over existing methods.
我们提出了一种新的算法,用于从欠采样 k-t 空间数据重建动态磁共振成像 (MRI) 数据。与依赖傅里叶空间稀疏性或带结构的经典基于模型的电影 MRI 方案不同,我们使用 Karhunen Louve 变换 (KLT) 域中数据的紧凑表示来利用数据集的相关性。数据相关的 KL 变换的使用使我们的方法非常适合一系列动态成像问题,即使运动不是周期性的。与当前基于 KLT 的方法相比,这些方法依赖于两步方法,首先估计基函数,然后用于重建,我们将问题表述为一个谱正则化矩阵恢复问题。通过从整个测量数据中同时确定时间基函数及其空间权重,所提出的方案能够在各种加速度下提供高质量的重建。除了使用 KLT 域中的紧凑表示外,我们还利用数据的稀疏性进一步提高恢复率。使用数值体模和体内心脏灌注 MRI 数据进行验证表明,与现有方法相比,所提出的方案在性能方面有显著提高。