Suppr超能文献

k-t主成分分析:使用主成分分析的时间约束k-t快速线性迭代收缩阈值算法重建

k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis.

作者信息

Pedersen Henrik, Kozerke Sebastian, Ringgaard Steffen, Nehrke Kay, Kim Won Yong

机构信息

MR Research Centre, Aarhus University Hospital Skejby, Aarhus, Denmark.

出版信息

Magn Reson Med. 2009 Sep;62(3):706-16. doi: 10.1002/mrm.22052.

Abstract

The k-t broad-use linear acquisition speed-up technique (BLAST) has become widespread for reducing image acquisition time in dynamic MRI. In its basic form k-t BLAST speeds up the data acquisition by undersampling k-space over time (referred to as k-t space). The resulting aliasing is resolved in the Fourier reciprocal x-f space (x = spatial position, f = temporal frequency) using an adaptive filter derived from a low-resolution estimate of the signal covariance. However, this filtering process tends to increase the reconstruction error or lower the achievable acceleration factor. This is problematic in applications exhibiting a broad range of temporal frequencies such as free-breathing myocardial perfusion imaging. We show that temporal basis functions calculated by subjecting the training data to principal component analysis (PCA) can be used to constrain the reconstruction such that the temporal resolution is improved. The presented method is called k-t PCA.

摘要

k-t广泛应用线性采集加速技术(BLAST)已广泛用于减少动态磁共振成像(MRI)中的图像采集时间。在其基本形式中,k-t BLAST通过随时间对k空间(称为k-t空间)进行欠采样来加速数据采集。使用从信号协方差的低分辨率估计得出的自适应滤波器,在傅里叶倒数x-f空间(x =空间位置,f =时间频率)中解决由此产生的混叠。然而,这种滤波过程往往会增加重建误差或降低可实现的加速因子。在诸如自由呼吸心肌灌注成像等具有广泛时间频率范围的应用中,这是个问题。我们表明,通过对训练数据进行主成分分析(PCA)计算得到的时间基函数可用于约束重建,从而提高时间分辨率。所提出的方法称为k-t PCA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验