Suppr超能文献

模拟吸入性炭疽的宿主反应。

Modeling the host response to inhalation anthrax.

机构信息

Mathematical Biosciences Institute, 3rd Floor Jennings Hall, The Ohio State University, Columbus, OH 43210, USA.

出版信息

J Theor Biol. 2011 May 7;276(1):199-208. doi: 10.1016/j.jtbi.2011.01.054. Epub 2011 Feb 3.

Abstract

Inhalation anthrax, an often fatal infection, is initiated by endospores of the bacterium Bacillus anthracis, which are introduced into the lung. To better understand the pathogenesis of an inhalation anthrax infection, we propose a two-compartment mathematical model that takes into account the documented early events of such an infection. Anthrax spores, once inhaled, are readily taken up by alveolar phagocytes, which then migrate rather quickly out of the lung and into the thoracic/mediastinal lymph nodes. En route, these spores germinate to become vegetative bacteria. In the lymph nodes, the bacteria kill the host cells and are released into the extracellular environment where they can be disseminated into the blood stream and grow to a very high level, often resulting in the death of the infected person. Using this framework as the basis of our model, we explore the probability of survival of an infected individual. This is dependent on several factors, such as the rate of migration and germination events and treatment with antibiotics.

摘要

吸入性炭疽,一种常致命的感染,是由炭疽杆菌的内生孢子引发的,这些内生孢子被引入肺部。为了更好地理解吸入性炭疽感染的发病机制,我们提出了一个两室数学模型,该模型考虑了这种感染的已记录的早期事件。一旦吸入炭疽孢子,它们就很容易被肺泡吞噬细胞摄取,然后迅速从肺部迁移到胸/纵隔淋巴结。在此过程中,这些孢子发芽成为营养细菌。在淋巴结中,细菌杀死宿主细胞并被释放到细胞外环境中,在那里它们可以传播到血液中并大量生长,通常导致感染者死亡。我们的模型以此框架为基础,探索了受感染者存活的概率。这取决于几个因素,如迁移和发芽事件的速度以及抗生素治疗。

相似文献

1
Modeling the host response to inhalation anthrax.
J Theor Biol. 2011 May 7;276(1):199-208. doi: 10.1016/j.jtbi.2011.01.054. Epub 2011 Feb 3.
2
A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
Front Immunol. 2021 Aug 23;12:688257. doi: 10.3389/fimmu.2021.688257. eCollection 2021.
3
Modeling the macrophage-anthrax spore interaction: Implications for early host-pathogen interactions.
Math Biosci. 2018 Nov;305:18-28. doi: 10.1016/j.mbs.2018.08.010. Epub 2018 Aug 27.
5
Key aspects of the molecular and cellular basis of inhalational anthrax.
Microbes Infect. 2011 Dec;13(14-15):1146-55. doi: 10.1016/j.micinf.2011.07.005. Epub 2011 Jul 21.
6
Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a rapid process facilitated by CD11c+ cells.
Microb Pathog. 2010 Jul-Aug;49(1-2):38-46. doi: 10.1016/j.micpath.2010.02.004. Epub 2010 Feb 25.
8
Inactivation of Bacillus anthracis spores in murine primary macrophages.
Cell Microbiol. 2006 Oct;8(10):1634-42. doi: 10.1111/j.1462-5822.2006.00738.x.
9
Innate Immune Interactions between and Host Neutrophils.
Front Cell Infect Microbiol. 2018 Jan 22;8:2. doi: 10.3389/fcimb.2018.00002. eCollection 2018.
10
The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Bacillus anthracis Infection in BALB/c Mice and Cynomolgus Macaques.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.01103-17. Print 2017 Oct.

引用本文的文献

1
Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach.
NPJ Syst Biol Appl. 2024 Mar 29;10(1):33. doi: 10.1038/s41540-024-00357-1.
2
A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
Front Immunol. 2021 Aug 23;12:688257. doi: 10.3389/fimmu.2021.688257. eCollection 2021.
3
Computational fluid dynamics modeling of spore deposition in rabbit and human respiratory airways.
J Aerosol Sci. 2016 Sep;99:64-77. doi: 10.1016/j.jaerosci.2016.01.011. Epub 2016 Apr 26.
4
Dangerous Pathogens as a Potential Problem for Public Health.
Medicina (Kaunas). 2020 Nov 6;56(11):591. doi: 10.3390/medicina56110591.
6
A Novel Stochastic Multi-Scale Model of Infection to Predict Risk of Infection in a Laboratory.
Front Microbiol. 2018 Jul 6;9:1165. doi: 10.3389/fmicb.2018.01165. eCollection 2018.
7
Mathematical Models for Immunology: Current State of the Art and Future Research Directions.
Bull Math Biol. 2016 Oct;78(10):2091-2134. doi: 10.1007/s11538-016-0214-9. Epub 2016 Oct 6.
8
Modeling early events in Francisella tularensis pathogenesis.
Front Cell Infect Microbiol. 2014 Dec 11;4:169. doi: 10.3389/fcimb.2014.00169. eCollection 2014.
9
Deterministic models of inhalational anthrax in New Zealand white rabbits.
Biosecur Bioterror. 2014 Jan-Feb;12(1):29-41. doi: 10.1089/bsp.2013.0067. Epub 2014 Feb 14.
10
Microbicidal power of alpha radiation in sterilizing germinating Bacillus anthracis spores.
Antimicrob Agents Chemother. 2014;58(3):1813-5. doi: 10.1128/AAC.01266-13. Epub 2013 Dec 30.

本文引用的文献

2
Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a rapid process facilitated by CD11c+ cells.
Microb Pathog. 2010 Jul-Aug;49(1-2):38-46. doi: 10.1016/j.micpath.2010.02.004. Epub 2010 Feb 25.
3
Modeling the immune rheostat of macrophages in the lung in response to infection.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11246-51. doi: 10.1073/pnas.0904846106. Epub 2009 Jun 22.
5
Inhalation anthrax: dose response and risk analysis.
Biosecur Bioterror. 2008 Jun;6(2):147-60. doi: 10.1089/bsp.2007.0066.
6
A methodology for performing global uncertainty and sensitivity analysis in systems biology.
J Theor Biol. 2008 Sep 7;254(1):178-96. doi: 10.1016/j.jtbi.2008.04.011. Epub 2008 Apr 20.
7
Modeling the incubation period of inhalational anthrax.
Med Decis Making. 2008 Jul-Aug;28(4):593-605. doi: 10.1177/0272989X08315245. Epub 2008 Jun 12.
9
Conference report on public health and clinical guidelines for anthrax.
Emerg Infect Dis. 2008 Apr;14(4):e1. doi: 10.3201/eid1404.070969.
10
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4312-7. doi: 10.1073/pnas.0707370105. Epub 2008 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验