Division of Neurobiology, Weill Cornell Medical College, New York, NY 10065, USA.
Neurobiol Dis. 2011 Jun;42(3):292-9. doi: 10.1016/j.nbd.2011.01.019. Epub 2011 Feb 3.
CD36, a class B scavenger receptor present in microglia, endothelium and leukocytes, plays a key role in ischemic brain injury by promoting the expression of inflammatory genes and production of reactive oxygen species (ROS). However, it is not known whether ischemic brain damage is mediated by CD36 activation in resident brain cells, i.e., microglia, or by blood-borne cells that infiltrate the brain. To address this question, we studied oxygen-glucose deprivation (OGD) in hippocampal slice cultures, a model of ischemic injury that does not involve cells extrinsic to the brain. We found that CD36 gene knockout does not afford protection of hippocampal slices to OGD-induced cytotoxicity. In contrast, immunoactivated bone marrow-derived monocytes-macrophages (BMM) from wild type (WT) mice trigger hippocampal damage when incubated with brain slices via a mechanism that is prevented in CD36-/- BMM. The neurotoxic activity of CD36+/+ BMM was attributed to reactive oxygen species (ROS) since it was concomitant with increased ROS production and could be prevented by treatment with a selective ROS scavenger, MnTBAP, or a peroxynitrite decomposition catalyst, FeTPPS. Importantly, ROS production and accumulation 3-nitrotyrosine in hippocampal proteins (a hallmark of peroxynitrite production) was significantly dampened in immunoactivated CD36-/- BMM, whereas production of NO-derived metabolites (nitrite and nitrate) was unaltered. We conclude that CD36 signaling may not contribute to injury induced by OGD in the brain itself but is involved in the neurotoxicity mediated by activated BMM. These findings are consistent with the hypothesis that CD36 in infiltrating inflammatory cells drives peroxynitrite-mediated ischemic brain damage. Accordingly, targeting CD36 in the vascular compartment may protect against neurotoxicity in the ischemic brain.
CD36 是一种 B 型清道夫受体,存在于小胶质细胞、内皮细胞和白细胞中,通过促进炎症基因的表达和活性氧 (ROS) 的产生,在缺血性脑损伤中发挥关键作用。然而,目前尚不清楚缺血性脑损伤是由驻留脑细胞(即小胶质细胞)中 CD36 的激活介导的,还是由浸润大脑的血液来源细胞介导的。为了解决这个问题,我们研究了海马切片培养中的氧葡萄糖剥夺 (OGD),这是一种不涉及大脑外细胞的缺血性损伤模型。我们发现,CD36 基因敲除不能为海马切片提供对 OGD 诱导的细胞毒性的保护。相比之下,来自野生型 (WT) 小鼠的免疫激活的骨髓来源单核细胞-巨噬细胞 (BMM) 通过一种机制与脑切片孵育时会触发海马损伤,而这种机制在 CD36-/- BMM 中被阻止。CD36+/+ BMM 的神经毒性活性归因于活性氧 (ROS),因为它伴随着 ROS 产生的增加,并且可以通过用选择性 ROS 清除剂 MnTBAP 或过氧亚硝酸盐分解催化剂 FeTPPS 进行治疗来预防。重要的是,ROS 的产生和海马蛋白中 3-硝基酪氨酸的积累(过氧亚硝酸盐产生的标志)在免疫激活的 CD36-/- BMM 中显著减弱,而 NO 衍生代谢物(亚硝酸盐和硝酸盐)的产生则没有改变。我们得出结论,CD36 信号传导可能不会导致大脑自身 OGD 诱导的损伤,但参与了激活的 BMM 介导的神经毒性。这些发现与这样的假设一致,即浸润炎症细胞中的 CD36 驱动过氧亚硝酸盐介导的缺血性脑损伤。因此,靶向血管部位的 CD36 可能有助于防止缺血性脑的神经毒性。