Suppr超能文献

枯草芽孢杆菌通过获取相容性溶质来对抗冷应激的保护作用。

Protection of Bacillus subtilis against cold stress via compatible-solute acquisition.

机构信息

Philipps-University Marburg, Department of Biology, Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany.

出版信息

J Bacteriol. 2011 Apr;193(7):1552-62. doi: 10.1128/JB.01319-10. Epub 2011 Feb 4.

Abstract

Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.

摘要

相容溶质的积累是细菌广泛采用的一种策略,可实现细胞对高渗透压的保护。这些化合物也被一些微生物用作热应激保护剂。我们发现枯草芽孢杆菌将相容溶质甘氨酸甜菜碱用作有效的冷应激保护剂。甘氨酸甜菜碱在 15°C 时强烈刺激生长,并允许在抑制生长的 13°C 温度下细胞增殖。在 15°C 时甘氨酸甜菜碱的初始摄取量较低,但最终导致细胞内池的积累,其大小是在 35°C 下生长的细胞的两倍。三种甘氨酸甜菜碱转运蛋白(OpuA、OpuC 和 OpuD)中的每一种都有助于甘氨酸甜菜碱在低温下的积累。当甘氨酸甜菜碱从其前体胆碱合成时,也能实现对冷应激的保护。在低温(15°C)下,合成相容溶质脯氨酸的渗透适应生物合成缺陷的突变体的生长不受影响。除了甘氨酸甜菜碱外,相容溶质和渗透保护剂 l-肉碱、丁烯基甜菜碱、丁酰甜菜碱、同型甜菜碱、二甲基亚砜乙酸盐和脯氨酸甜菜碱也都作为冷应激保护剂,并通过已知的 Opu 转运系统积累。相比之下,相容溶质和渗透保护剂硫酸胆碱、海藻糖、脯氨酸和谷氨酸没有冷保护作用。我们的数据突出了枯草芽孢杆菌适应低温环境的一个被低估的方面,并允许比较相容溶质的特性,以了解它们对枯草芽孢杆菌细胞的渗透压、热和冷应激保护特性。

相似文献

1
Protection of Bacillus subtilis against cold stress via compatible-solute acquisition.
J Bacteriol. 2011 Apr;193(7):1552-62. doi: 10.1128/JB.01319-10. Epub 2011 Feb 4.
2
Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis.
Microbiology (Reading). 2014 Oct;160(Pt 10):2283-2294. doi: 10.1099/mic.0.079665-0. Epub 2014 Jul 10.
6
OpuF, a New Bacillus Compatible Solute ABC Transporter with a Substrate-Binding Protein Fused to the Transmembrane Domain.
Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01728-18. Print 2018 Oct 15.
7
Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium.
Appl Environ Microbiol. 2003 Dec;69(12):7492-8. doi: 10.1128/AEM.69.12.7492-7498.2003.
8
High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis.
Appl Environ Microbiol. 1999 Feb;65(2):560-8. doi: 10.1128/AEM.65.2.560-568.1999.

引用本文的文献

2
Bacterial osmoprotectants-a way to survive in saline conditions and potential crop allies.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf020.
3
Biodesulfurization of high-sulfur oil from the Karazhanbas field of Kazakhstan with deep eutectic solvents.
Heliyon. 2025 Jan 10;11(2):e41877. doi: 10.1016/j.heliyon.2025.e41877. eCollection 2025 Jan 30.
4
Interactions Between Bacterivorous Nematodes and Bacteria Reduce NO Emissions.
Adv Sci (Weinh). 2025 Mar;12(12):e2413227. doi: 10.1002/advs.202413227. Epub 2025 Jan 31.
5
Efficient low-temperature wastewater treatment by sp. nov.: a novel cold-tolerant bacterium isolated from mangrove sediment.
Front Microbiol. 2024 Oct 31;15:1491174. doi: 10.3389/fmicb.2024.1491174. eCollection 2024.
6
Investigation of cold-resistance mechanisms in cryophylactic yeast based on comparative transcriptome analysis.
Front Microbiol. 2024 Sep 25;15:1476087. doi: 10.3389/fmicb.2024.1476087. eCollection 2024.
7
Lipid phase separation impairs membrane thickness sensing by the sensor kinase DesK.
Microbiol Spectr. 2024 Jun 4;12(6):e0392523. doi: 10.1128/spectrum.03925-23. Epub 2024 May 8.
8
Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation.
Folia Microbiol (Praha). 2024 Aug;69(4):775-787. doi: 10.1007/s12223-023-01117-0. Epub 2023 Dec 5.

本文引用的文献

1
T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.
Microbiology (Reading). 2011 Apr;157(Pt 4):977-987. doi: 10.1099/mic.0.047357-0. Epub 2011 Jan 13.
2
The BCCT family of carriers: from physiology to crystal structure.
Mol Microbiol. 2010 Oct;78(1):13-34. doi: 10.1111/j.1365-2958.2010.07332.x.
3
Membrane thickness cue for cold sensing in a bacterium.
Curr Biol. 2010 Sep 14;20(17):1539-44. doi: 10.1016/j.cub.2010.06.074. Epub 2010 Aug 12.
4
Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics.
Environ Microbiol. 2010 Oct;12(10):2658-76. doi: 10.1111/j.1462-2920.2010.02235.x.
5
The effect of compatible solute ectoines on the structural organization of lipid monolayer and bilayer membranes.
Biophys Chem. 2010 Aug;150(1-3):37-46. doi: 10.1016/j.bpc.2010.02.007. Epub 2010 Feb 11.
6
How do bacteria sense and respond to low temperature?
Arch Microbiol. 2010 Feb;192(2):85-95. doi: 10.1007/s00203-009-0539-y. Epub 2010 Jan 5.
7
A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation.
J Bacteriol. 2010 Feb;192(3):870-82. doi: 10.1128/JB.01106-09. Epub 2009 Nov 30.
8
Temperature sensors of eubacteria.
Adv Appl Microbiol. 2009;67:213-56. doi: 10.1016/S0065-2164(08)01007-1.
9
Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions.
Appl Environ Microbiol. 2009 Mar;75(6):1471-7. doi: 10.1128/AEM.01644-08. Epub 2008 Dec 29.
10
Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures.
Crit Rev Food Sci Nutr. 2009 Mar;49(3):237-53. doi: 10.1080/10408390701856272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验