Florida International University, Department of Chemistry & Biochemistry, Miami 33199, USA.
Faraday Discuss. 2010;147:479-94; discussion 527-52. doi: 10.1039/c003475d.
Polycyclic aromatic hydrocarbons (PAHs) are believed to be responsible for the formation of organic haze layers in Titan's atmosphere, but the nature of PAHs on Titan and their formation and growth mechanisms are not well understood. Considering the high abundance of nitrogen in Titan's atmosphere, it is likely that the haze layers hold not only pure hydrocarbon PAHs but also their nitrogenated analogs, N-containing polycyclic aromatic compounds (N-PACs) with 'hetero' N atoms in aromatic rings. Laboratory studies of Titan's tholins also support the hypothesis that, together with pure PAHs and their cations, N-PACs may be the fundamental building blocks of microphysical tholin particles. In the present work, we carried out ab initio quantum chemical calculations of potential energy surfaces for various reaction mechanisms of incorporation of nitrogen atoms into aromatic rings of polycyclic aromatic compounds, which may lead to the formation of N-PACs under the low-temperature and low-pressure conditions of Titan's atmosphere. This includes mechanisms analogous to the Ethynyl Addition Mechanism (EAM) recently proposed by us for the growth of PAH by sequential C2H additions to benzene. We consider consecutive C2H and CN additions to C6H6, C6H6 + CN --> C6H5CN + H, C6HCN + C2H --> C6H4(CN)(C2H) + H, C6H5CN + CN --> C6H4(CN)2 + H, C6H4(CN)(C2H) + C2H --> 2-aza-4-ethynyl-1-naphthyl/2-aza-1-ethynyl-4-naphthyl, C6H4(CN)2 + C2H --> C6H4(CN)(NCCCH), and C6H4(CN)(NCCCH) + C2H --> 1,4-diethynylphthalazine. Although these reactions are found to be barrierless and exothermic and therefore feasible at low temperatures, the steps leading to the aza-ethynyl-naphthyl radicals, C6H4(CN)(NCCCH), and 1,4-diethynylphthalazine can give N-PACs as final products only upon their collisional or radiational stabilization. Alternatively, an N-PAC can be synthesized via the reaction of 2-methyleneaminobenzonitrile with C2H, producing 4-ethynyl-quinoline + H without an entrance barrier via a three-step sequence including C2H addition to C of CN, ring closure, and H elimination. 2-Methyleneaminobenzonitrile itself can be formed in the reaction of methyleneaminobenzene with cyano radical, C6H5(NCH2) + CN --> C6H5(NCH2)(CN) --> C6H4(NCH2)(CN) + H, which also does not have any entrance barrier. Methyleneaminobenzene can be produced through recombination of phenyl and methylene-amidogen radicals followed by collisional stabilization of the product, via the barrierless C6Hs + CH3N --> C6Hs(NCH3) --> C6H5(NCH2) + H reaction, or in the reaction of phenyl with methyleneimine, C6H5 + CH2NH --> C6Hs(NHCH3) --> C6H5(NCH2) + H. The latter would be slow at low-temperature conditions owing to the barriers of 4.5 and 2.8 kcal mol(-1) relative to the initial reactants, but feasible if the reactants possess sufficient internal energy to overcome these barriers. We anticipate that the presented mechanisms are viable to form N-PACs in hydrocarbon and nitrogen rich, low temperature atmospheres of planets and their moons such as Titan.
多环芳烃(PAHs)被认为是泰坦大气中有机霾层形成的原因,但泰坦上 PAHs 的性质及其形成和生长机制尚不清楚。考虑到泰坦大气中氮的丰富度,霾层中可能不仅含有纯碳氢化合物 PAHs,还含有其氮化物类似物,即带有芳香环中“杂”氮原子的含氮多环芳烃化合物(N-PACs)。对泰坦索林斯的实验室研究也支持了这样的假设,即与纯 PAHs 和它们的阳离子一起,N-PACs 可能是微物理索林颗粒的基本组成部分。在本工作中,我们对多环芳烃化合物中环上氮原子掺入的各种反应机制的势能表面进行了从头算量子化学计算,这些反应机制可能会导致在泰坦大气的低温低压条件下形成 N-PACs。这包括类似于我们最近提出的乙炔基加成机制(EAM)的机制,用于通过苯的连续 C2H 加成来生长 PAH。我们考虑了 C6H6 与 CN 的连续 C2H 和 CN 加成,C6H6 + CN --> C6H5CN + H、C6HCN + C2H --> C6H4(CN)(C2H) + H、C6H5CN + CN --> C6H4(CN)2 + H、C6H4(CN)(C2H) + C2H --> 2-aza-4-ethynyl-1-naphthyl/2-aza-1-ethynyl-4-naphthyl、C6H4(CN)2 + C2H --> C6H4(CN)(NCCCH) 和 C6H4(CN)(NCCCH) + C2H --> 1,4-二乙炔基酞嗪。尽管这些反应被发现是无势垒和放热的,因此在低温下是可行的,但导致氮杂乙炔基萘基自由基 C6H4(CN)(NCCCH)和 1,4-二乙炔基酞嗪的步骤只能在它们的碰撞或辐射稳定化后才能得到 N-PACs 作为最终产物。或者,N-PAC 可以通过 2-亚甲基氨基苯甲腈与 C2H 的反应合成,通过包括 C2H 加成到 CN 的 C、环闭和 H 消除的三步序列,无入口势垒地产生 4-乙炔基喹啉+H。2-亚甲基氨基苯甲腈本身可以通过亚甲基氨基苯与氰基自由基的反应形成,C6H5(NCH2) + CN --> C6H5(NCH2)(CN) --> C6H4(NCH2)(CN) + H,这也没有任何入口势垒。亚甲基氨基苯可以通过苯基和亚甲基酰胺基自由基的复合产生,然后通过无势垒的 C6Hs + CH3N --> C6Hs(NCH3) --> C6H5(NCH2) + H 反应或苯基与亚甲基胺的反应,C6H5 + CH2NH --> C6Hs(NHCH3) --> C6H5(NCH2) + H 来稳定产物。后者由于相对于初始反应物的 4.5 和 2.8 kcal mol(-1)的势垒,在低温条件下会很慢,但如果反应物具有足够的内部能量来克服这些势垒,那么是可行的。我们预计,所提出的机制在行星及其卫星(如泰坦)的富含碳氢化合物和氮的低温大气中是可行的,可用于形成 N-PACs。