Suppr超能文献

C2H + C2H4 及相关反应在 C4H5 势能面上的反应机理和产物分支比的理论研究。

A theoretical study of the reaction mechanism and product branching ratios of C2H + C2H4 and related reactions on the C4H5 potential energy surface.

机构信息

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.

出版信息

J Phys Chem A. 2009 Oct 22;113(42):11112-28. doi: 10.1021/jp904033a.

Abstract

Ab initio and density functional RCCSD(T)/cc-pVQZ//B3LYP/6-311G** calculations of various stationary points on the C(4)H(5) global potential energy surface have been performed to resolve the C(2)H + C(2)H(4) and C(2)H(3) + C(2)H(2) reaction mechanisms under single-collision conditions. The results show vinylacetylene + H as the nearly exclusive products for both reactions, with exothermicities of 26.5 and 4.3 kcal/mol, respectively. For C(2)H + C(2)H(4), the most important mechanisms include a barrierless formation of the CH(2)CH(2)CCH adduct c6 (56.9 kcal/mol below the reactants) in the entrance channel followed either by H loss from the vicinal CH(2) group via a barrier of 35.7 kcal/mol or by 1,2-H migration to form CH(3)CHCCH c3 (69.8 kcal/mol lower in energy than C(2)H + C(2)H(4)) via a 33.8 kcal/mol barrier and H elimination from the terminal CH(3) group occurring with a barrier of 49.4 kcal/mol. RRKM calculations of energy-dependent rate constants for individual reaction steps and branching ratios for various channels indicate that 77-78% of vinylacetylene is formed from the initial adduct, whereas 22-21% is produced via the two-step mechanism involving the 1,2-H shift c6-c3, with alternative channels contributing less than 1%. The theoretical results support the experimental crossed molecular beams observations of vinylacetylene being the major product of the C(2)H + C(2)H(4) reaction and the fact that CH(2)CHCCH is formed via a tight transition state with an exit barrier of 5-6 kcal/mol and also confirm that vinylacetylene can be produced from C(2)H + C(2)H(4) under low temperature conditions of Titan's atmosphere. The prevailing mechanism for the C(2)H(3) + C(2)H(2) reaction starts from the initial formation of different n-C(4)H(5) conformers occurring with significant entrance barriers of approximately 6 kcal/mol. The n-C(4)H(5) isomers reside 35-38 kcal/mol lower in energy than C(2)H(3) + C(2)H(2) and can rapidly rearrange to one another overcoming relatively low barriers of 3-5 kcal/mol. H loss from the n-C(4)H(5) species then gives the vinylacetylene product via exit barriers of approximately 6 kcal/mol with the corresponding transition states lying 1.2-1.6 kcal/mol above the C(2)H(3) + C(2)H(2) reactants. Since the C(2)H(3) + C(2)H(2) reaction is hindered by relatively high entrance barriers, it is not expected to be important in Titan's atmospheric environments but can produce n-C(4)H(5) or vinylacetylene under high temperature and pressure combustion conditions.

摘要

采用从头算和密度泛函 RCCSD(T)/cc-pVQZ//B3LYP/6-311G**方法对 C(4)H(5) 全局势能面上的各种稳定点进行了计算,以解决单分子碰撞条件下 C(2)H + C(2)H(4) 和 C(2)H(3) + C(2)H(2) 反应机制。结果表明,对于这两个反应,乙烯基乙炔+ H 是几乎唯一的产物,放热分别为 26.5 和 4.3 kcal/mol。对于 C(2)H + C(2)H(4),最重要的机制包括在入口通道中无势垒地形成 CH(2)CH(2)CCH 加合物 c6(反应物下方 56.9 kcal/mol),然后通过 35.7 kcal/mol 的势垒从相邻的 CH(2)基团中失去 H,或者通过 1,2-H 迁移通过 33.8 kcal/mol 的势垒形成 CH(3)CHCCH c3(比 C(2)H + C(2)H(4)低 69.8 kcal/mol),并通过终端 CH(3)基团的 H 消除发生在 49.4 kcal/mol 的势垒中。对于各个反应步骤的能量相关速率常数和各种通道的分支比的 RRKM 计算表明,77-78%的乙烯基乙炔是由初始加合物形成的,而 22-21%是通过涉及 1,2-H 移位 c6-c3 的两步机制形成的,而其他通道的贡献小于 1%。理论结果支持了 C(2)H + C(2)H(4)反应中乙烯基乙炔是主要产物的实验交叉分子束观测事实,以及 CH(2)CHCCH 是通过具有 5-6 kcal/mol 出口势垒的紧密过渡态形成的事实,并且还证实了乙烯基乙炔可以在泰坦大气的低温条件下由 C(2)H + C(2)H(4)产生。C(2)H(3) + C(2)H(2)反应的主要机制始于初始形成不同的 n-C(4)H(5)构象,其入口势垒约为 6 kcal/mol。n-C(4)H(5)异构体的能量比 C(2)H(3) + C(2)H(2)低 35-38 kcal/mol,可以通过相对较低的 3-5 kcal/mol 的势垒快速重排。然后,从 n-C(4)H(5)物种中失去 H 通过约 6 kcal/mol 的出口势垒给出乙烯基乙炔产物,相应的过渡态位于 C(2)H(3) + C(2)H(2)反应物上方 1.2-1.6 kcal/mol。由于 C(2)H(3) + C(2)H(2)反应受到相对较高的入口势垒的阻碍,预计在泰坦大气环境中并不重要,但在高温和高压燃烧条件下可以产生 n-C(4)H(5)或乙烯基乙炔。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验