Suppr超能文献

清醒大鼠肠道-脑轴中肠道葡萄糖诱导的钙调蛋白激酶信号传导。

Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats.

机构信息

Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA.

出版信息

Neurogastroenterol Motil. 2011 Jul;23(7):e282-93. doi: 10.1111/j.1365-2982.2011.01673.x. Epub 2011 Feb 9.

Abstract

BACKGROUND

Lumenal glucose initiates changes in gastrointestinal (GI) function, including inhibition of gastric emptying, stimulation of pancreatic exocrine and endocrine secretion, and intestinal fluid secretion. Glucose stimulates the release of GI hormones and 5-hydroxytryptamine (5-HT), and activates intrinsic and extrinsic neuronal pathways to initiate changes in GI function. The precise mechanisms involved in luminal glucose-sensing are not clear; studying gut endocrine cells is difficult due to their sparse and irregular localization within the epithelium.

METHODS

Here we show a technique to determine activation of gut epithelial cells and the gut-brain pathway in vivo in rats using immunohistochemical detection of the activated, phosphorylated, form of calcium-calmodulin kinase II (pCaMKII).

KEY RESULTS

Perfusion of the gut with glucose (60 mg) increased pCaMKII immunoreactivity in 5-HT-expressing enterochromaffin (EC) cells, cytokeratin-18 immunopositive brush cells, but not in enterocytes or cholecystokinin-expressing cells. Lumenal glucose increased pCaMKII in neurons in the myenteric plexus and nodose ganglion, nucleus of the solitary tract, dorsal motor nucleus of the vagus and the arcuate nucleus. pCaMKII expression in neurons, but not in EC cells, was significantly attenuated by pretreatment with the 5-HT(3) R antagonist ondansetron. Deoxynojirimycin, a selective agonist for the putative glucose sensor, sodium-glucose cotransporter-3 (SGLT-3), mimicked the effects of glucose with increased pCaMKII in ECs and neurons; galactose had no effect.

CONCLUSIONS & INFERENCES: The data suggest that native EC cells in situ respond to glucose, possibly via SGLT-3, to activate intrinsic and extrinsic neurons and thereby regulate GI function.

摘要

背景

腔内分泌的葡萄糖会引起胃肠(GI)功能的变化,包括抑制胃排空、刺激胰腺外分泌和内分泌分泌以及肠道液体分泌。葡萄糖会刺激 GI 激素和 5-羟色胺(5-HT)的释放,并激活内在和外在神经元途径,从而引发 GI 功能的变化。腔内葡萄糖感应的确切机制尚不清楚;由于肠内分泌细胞在上皮细胞中的分布稀疏且不规则,因此研究这些细胞具有一定难度。

方法

本研究通过免疫组织化学检测激活的、磷酸化的钙调蛋白激酶 II(pCaMKII)的形式,展示了一种在大鼠体内确定肠上皮细胞和肠-脑途径激活的技术。

主要结果

用葡萄糖(60mg)灌流肠道会增加 5-HT 表达的肠嗜铬细胞(EC)、细胞角蛋白 18 免疫阳性刷状细胞中 pCaMKII 的免疫反应性,但不会增加肠细胞或胆囊收缩素表达细胞中的 pCaMKII。腔内葡萄糖会增加肌间神经丛和迷走神经节、孤束核、迷走神经背核和弓状核中的神经元中的 pCaMKII。5-HT(3)R 拮抗剂昂丹司琼预处理会显著减弱神经元而非 EC 细胞中的 pCaMKII 表达。脱氧野尻霉素是假定的葡萄糖传感器、钠-葡萄糖协同转运蛋白-3(SGLT-3)的选择性激动剂,可增加 EC 细胞和神经元中的 pCaMKII,从而模拟葡萄糖的作用;而半乳糖则没有作用。

结论

数据表明,原位 EC 细胞可能通过 SGLT-3 对葡萄糖作出反应,以激活内在和外在神经元,从而调节 GI 功能。

相似文献

1
Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats.
Neurogastroenterol Motil. 2011 Jul;23(7):e282-93. doi: 10.1111/j.1365-2982.2011.01673.x. Epub 2011 Feb 9.
2
Detection and signaling of glucose in the intestinal mucosa--vagal pathway.
Neurogastroenterol Motil. 2011 Jul;23(7):591-4. doi: 10.1111/j.1365-2982.2011.01719.x.
3
Ligand-induced 5-HT3 receptor internalization in enteric neurons in rat ileum.
Gastroenterology. 2006 Jul;131(1):97-107. doi: 10.1053/j.gastro.2006.04.013.
4
Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus.
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R657-66. doi: 10.1152/ajpregu.00345.2011. Epub 2011 Dec 7.
7
Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.
Am J Physiol Gastrointest Liver Physiol. 2003 Mar;284(3):G367-72. doi: 10.1152/ajpgi.00292.2001. Epub 2002 Oct 30.
8
Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter.
Am J Physiol Gastrointest Liver Physiol. 2006 Sep;291(3):G439-45. doi: 10.1152/ajpgi.00079.2006. Epub 2006 May 4.
9
5-HT3 receptors participate in CCK-induced suppression of food intake by delaying gastric emptying.
Am J Physiol Regul Integr Comp Physiol. 2004 Oct;287(4):R817-23. doi: 10.1152/ajpregu.00295.2004. Epub 2004 Jun 10.

引用本文的文献

2
Study of the Mechanism of Antiemetic Effect of Mill. Essential Oil Based on Ca/CaMKII/ERK1/2 Pathway.
Drug Des Devel Ther. 2022 Jul 26;16:2407-2422. doi: 10.2147/DDDT.S366597. eCollection 2022.
4
Role of the gut-brain axis in energy and glucose metabolism.
Exp Mol Med. 2022 Apr;54(4):377-392. doi: 10.1038/s12276-021-00677-w. Epub 2022 Apr 26.
6
The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine.
Int J Mol Sci. 2021 Jul 25;22(15):7931. doi: 10.3390/ijms22157931.
8
The gut microbiota to the brain axis in the metabolic control.
Rev Endocr Metab Disord. 2019 Dec;20(4):427-438. doi: 10.1007/s11154-019-09511-1.
9
Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health.
Gut Microbes. 2020;11(2):135-157. doi: 10.1080/19490976.2019.1638722. Epub 2019 Aug 1.
10

本文引用的文献

1
A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.
PLoS One. 2010 Apr 20;5(4):e10241. doi: 10.1371/journal.pone.0010241.
2
Glucose sensing in L cells: a primary cell study.
Cell Metab. 2008 Dec;8(6):532-9. doi: 10.1016/j.cmet.2008.11.002.
3
Nutritional regulation of glucagon-like peptide-1 secretion.
J Physiol. 2009 Jan 15;587(1):27-32. doi: 10.1113/jphysiol.2008.164012. Epub 2008 Nov 10.
4
Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing.
Curr Opin Endocrinol Diabetes Obes. 2008 Feb;15(1):73-8. doi: 10.1097/MED.0b013e3282f43a73.
5
Intestinal glucose sensing and regulation of intestinal glucose absorption.
Biochem Soc Trans. 2007 Nov;35(Pt 5):1191-4. doi: 10.1042/BST0351191.
6
T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1.
Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15075-80. doi: 10.1073/pnas.0706678104. Epub 2007 Aug 27.
7
Sensing of glucose in the gastrointestinal tract.
Auton Neurosci. 2007 Apr 30;133(1):86-90. doi: 10.1016/j.autneu.2007.01.006. Epub 2007 Feb 26.
8
Imino sugars are potent agonists of the human glucose sensor SGLT3.
Mol Pharmacol. 2007 Feb;71(2):628-34. doi: 10.1124/mol.106.030288. Epub 2006 Nov 16.
9
Ligand-induced 5-HT3 receptor internalization in enteric neurons in rat ileum.
Gastroenterology. 2006 Jul;131(1):97-107. doi: 10.1053/j.gastro.2006.04.013.
10
Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter.
Am J Physiol Gastrointest Liver Physiol. 2006 Sep;291(3):G439-45. doi: 10.1152/ajpgi.00079.2006. Epub 2006 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验