Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
J Biol Chem. 2011 Apr 8;286(14):12349-60. doi: 10.1074/jbc.M110.201715. Epub 2011 Feb 8.
Membrane phosphatidylcholine homeostasis is maintained in part by a sensing device in the key regulatory enzyme, CTP:phosphocholine cytidylyltransferase (CCT). CCT responds to decreases in membrane phosphatidylcholine content by reversible membrane binding and activation. Two prominent isoforms, CCTα and -β2, have nearly identical catalytic domains and very similar membrane binding amphipathic helical (M) domains but have divergent and structurally disordered N-terminal (N) and C-terminal phosphorylation (P) regions. We found that the binding affinity of purified CCTβ2 for anionic membranes was weaker than CCTα by more than an order of magnitude. Using chimeric CCTs, insertion/deletion mutants, and truncated CCTs, we show that the stronger affinity of CCTα can be attributed in large part to the electrostatic membrane binding function of the polybasic nuclear localization signal (NLS) motif, present in the unstructured N-terminal segment of CCTα but lacking in CCTβ2. The membrane partitioning of CCTβ2 in cells enriched with the lipid activator, oleic acid, was also weaker than that of CCTα and was elevated by incorporation of the NLS motif. Thus, the polybasic NLS can function as a secondary membrane binding motif not only in vitro but in the context of cell membranes. A comparison of phosphorylated, dephosphorylated, and region P-truncated forms showed that the in vitro membrane affinity of CCTβ2 is more sensitive than CCTα to phosphorylation status, which antagonizes membrane binding of both isoforms. These data provide a model wherein the primary membrane binding motif, an amphipathic helical domain, works in collaboration with other intrinsically disordered segments that modulate membrane binding strength. The NLS reinforces, whereas the phosphorylated tail antagonizes the attraction of domain M for anionic membranes.
膜磷脂酰胆碱的动态平衡部分由关键调节酶 CTP:磷酸胆碱胞苷转移酶(CCT)中的感应装置维持。CCT 通过可逆的膜结合和激活来响应膜磷脂酰胆碱含量的降低。两种主要的同工型 CCTα 和 -β2 具有几乎相同的催化结构域和非常相似的膜结合两亲性螺旋(M)结构域,但具有不同且结构无序的 N 端(N)和 C 端磷酸化(P)区域。我们发现,纯化的 CCTβ2 与阴离子膜的结合亲和力比 CCTα 弱一个数量级以上。使用嵌合 CCT、插入/缺失突变体和截断的 CCT,我们表明 CCTα 更强的亲和力在很大程度上归因于多碱性核定位信号(NLS)模体的静电膜结合功能,该模体存在于 CCTα 的无结构 N 端片段中,但在 CCTβ2 中缺失。在富含脂质激活剂油酸的细胞中,CCTβ2 的膜分配也比 CCTα 弱,并且通过包含 NLS 模体而升高。因此,多碱性 NLS 不仅可以在体外,而且可以在细胞膜的背景下作为次要的膜结合基序发挥作用。对磷酸化、去磷酸化和区域 P 截断形式的比较表明,与 CCTα 相比,CCTβ2 的体外膜亲和力对磷酸化状态更为敏感,这拮抗了两种同工型的膜结合。这些数据提供了一个模型,其中主要的膜结合基序,即两亲性螺旋结构域,与其他调节膜结合强度的固有无序片段协同作用。NLS 加强了,而磷酸化尾巴拮抗了 M 结构域对阴离子膜的吸引力。