Suppr超能文献

理解蛋白质的非折叠状态。

Understanding protein non-folding.

作者信息

Uversky Vladimir N, Dunker A Keith

机构信息

Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Biochim Biophys Acta. 2010 Jun;1804(6):1231-64. doi: 10.1016/j.bbapap.2010.01.017. Epub 2010 Feb 1.

Abstract

This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?

摘要

本综述描述了内在无序蛋白质家族,其成员在生理条件下,要么整条链,要么仅在局部区域无法形成刚性的三维结构。相反,这些引人关注的蛋白质/区域以动态集合体的形式存在,其中原子位置和主链拉氏角呈现出极大的时间波动,没有特定的平衡值。已知许多这类内在无序蛋白质执行着重要的生物学功能,而这些功能实际上依赖于缺乏特定的三维结构。这类蛋白质的存在不符合普遍的结构-功能范式,该范式认为独特的三维结构是功能的先决条件。因此,蛋白质结构-功能范式必须扩展,以纳入内在无序蛋白质以及蛋白质序列、结构和功能之间的其他关系。这种范式的转变代表了生物化学、生物物理学和分子生物学的一项重大突破,因为它开启了对蛋白质复杂生命的新理解层面。本综述将尝试回答以下问题:内在无序蛋白质是如何被发现的?为什么这些蛋白质不折叠?内在无序有什么特别之处?无序蛋白质/区域的功能优势是什么?这些蛋白质的功能范围是什么?内在无序蛋白质与人类疾病之间有什么关系?

相似文献

1
Understanding protein non-folding.
Biochim Biophys Acta. 2010 Jun;1804(6):1231-64. doi: 10.1016/j.bbapap.2010.01.017. Epub 2010 Feb 1.
2
The unfoldomics decade: an update on intrinsically disordered proteins.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2164-9-S2-S1.
3
Intrinsically disordered proteins from A to Z.
Int J Biochem Cell Biol. 2011 Aug;43(8):1090-103. doi: 10.1016/j.biocel.2011.04.001. Epub 2011 Apr 8.
4
Intrinsically disordered protein.
J Mol Graph Model. 2001;19(1):26-59. doi: 10.1016/s1093-3263(00)00138-8.
5
Unfoldomics of human diseases: linking protein intrinsic disorder with diseases.
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2164-10-S1-S7.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Describing sequence-ensemble relationships for intrinsically disordered proteins.
Biochem J. 2013 Jan 15;449(2):307-18. doi: 10.1042/BJ20121346.
9
The multifaceted roles of intrinsic disorder in protein complexes.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2498-506. doi: 10.1016/j.febslet.2015.06.004. Epub 2015 Jun 11.
10

引用本文的文献

1
Energy Landscapes and Structural Plasticity of Intrinsically Disordered Histones.
J Chem Inf Model. 2025 Aug 25;65(16):8679-8687. doi: 10.1021/acs.jcim.4c02269. Epub 2025 Aug 6.
2
Phosphorylation-Regulated Conformational Diversity and Topological Dynamics of an Intrinsically Disordered Nuclear Receptor.
J Phys Chem B. 2025 Jul 31;129(30):7719-7730. doi: 10.1021/acs.jpcb.5c03257. Epub 2025 Jul 17.
3
Protective Effect of Curcumin on Thermally Aggregated Bovine Serum Albumin.
Cell Biochem Biophys. 2025 Jul 12. doi: 10.1007/s12013-025-01810-6.
5
Glycosylation Weakens Skp1 Homodimerization in by Interrupting a Fuzzy Interaction.
Biochemistry. 2025 May 20;64(10):2262-2279. doi: 10.1021/acs.biochem.4c00859. Epub 2025 Apr 29.
8
Intrinsic stiffness and -solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation.
PNAS Nexus. 2025 Feb 5;4(2):pgaf039. doi: 10.1093/pnasnexus/pgaf039. eCollection 2025 Feb.
9
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
10
Genome-Wide Characterization of Wholly Disordered Proteins in .
Int J Mol Sci. 2025 Jan 28;26(3):1117. doi: 10.3390/ijms26031117.

本文引用的文献

1
A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins.
Mol Cell Proteomics. 2010 Oct;9(10):2205-24. doi: 10.1074/mcp.M000035-MCP201. Epub 2010 Apr 5.
2
ELM: the status of the 2010 eukaryotic linear motif resource.
Nucleic Acids Res. 2010 Jan;38(Database issue):D167-80. doi: 10.1093/nar/gkp1016. Epub 2009 Nov 17.
4
Assessment of disorder predictions in CASP8.
Proteins. 2009;77 Suppl 9:210-6. doi: 10.1002/prot.22586.
7
Influence of sequence changes and environment on intrinsically disordered proteins.
PLoS Comput Biol. 2009 Sep;5(9):e1000497. doi: 10.1371/journal.pcbi.1000497. Epub 2009 Sep 4.
8
ANCHOR: web server for predicting protein binding regions in disordered proteins.
Bioinformatics. 2009 Oct 15;25(20):2745-6. doi: 10.1093/bioinformatics/btp518. Epub 2009 Aug 28.
10
Structural polymorphism and multifunctionality of myelin basic protein.
Biochemistry. 2009 Sep 1;48(34):8094-104. doi: 10.1021/bi901005f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验