Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
Development. 2011 Mar;138(6):1173-81. doi: 10.1242/dev.054049. Epub 2011 Feb 9.
Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we have identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenous-dependent requirement for protein prenylation in zebrafish and human endothelial cells.
在早期发育阶段,动脉和静脉内皮细胞表现出明显不同的分子特征。这些谱系特异性的分子程序对动脉和静脉的不同血管结构和生理条件的发育具有指导意义,但它们在血管生成中的作用仍未被探索。在这里,我们展示了斑马鱼的尾静脉丛是通过内皮细胞出芽、迁移和吻合形成的,为静脉血管生成提供了一个特定的模型。利用这个模型,我们发现了一种新型化合物 aplexone,它能有效地抑制静脉血管生成,但不抑制动脉血管生成。多条证据表明,aplexone 通过靶向 HMG-CoA 还原酶(HMGCR)途径,差异调节动静脉血管生成。aplexone 处理会影响 HMGCR 途径中酶的转录,并降低细胞内胆固醇水平。注射 HMGCR 的代谢产物甲羟戊酸可逆转 aplexone 对静脉血管生成的抑制作用。此外,aplexone 处理抑制蛋白质异戊烯化,阻断法尼基转移酶的活性会诱导类似于在 aplexone 处理的胚胎中观察到的静脉血管生成表型。此外,静脉来源的内皮细胞比动脉内皮细胞需要更高水平的蛋白质进行异戊烯化,抑制 Rac 或 Rho 激酶的活性可有效减少静脉内皮细胞的迁移,但不影响动脉内皮细胞的迁移。总之,我们的研究结果表明,在斑马鱼和人类内皮细胞中,血管生成通过 HMGCR 途径以一种动静脉依赖性的方式受到蛋白质异戊烯化的调节。