Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099.
J Xray Sci Technol. 1994 Jan 1;4(4):263-74. doi: 10.3233/XST-1994-4402.
In this work we combine elements of chirped pulse amplification (CPA) techniques, now familiar in solid-state lasers, with an amplifier based upon a seeded free-electron laser (FEL). The resulting device would produce amplified pulses of unprecedented brevity at wavelengths shorter than can be currently obtained by any tunable laser system. We use a subharmonically seeded FEL to illustrate the concept. Radiation from a Ti:sapphire laser is frequency-tripled and stretched optically to provide a coherent seed pulse for the FEL. When coupled to an electron beam inside a magnetic wiggler, the seed radiation introduces an additional energy modulation on the electron bunch, which has been prepared with an energy chirp to match the chirp in the optical pulse. The energy modulated electrons are then spatially bunched in a dispersion magnet and introduced to a wiggler configured to be resonant to a harmonic of the seed laser, providing additional frequency multiplication. The coherent radiation produced by these electrons is amplified as it traverses the wiggler and recompressed optically. The preservation of phase coherence provided by this scheme results in a device which can yield 4-fs pulses with 0.3 mJ at a central wavelength of ca. 88 nm, easily the shortest duration amplified pulses produced by any laser. In this paper, we discuss various aspects of the concept, including the generation of short pulses, temporal stretching and compression, and potential applications of the device. The phase distortion during the wide bandwidth FEL amplification is discussed in detail, and is shown to be within the bounds required to produce a 4-fs pulse upon compression.
在这项工作中,我们将啁啾脉冲放大(CPA)技术的元素与基于种子的自由电子激光(FEL)的放大器结合在一起。由此产生的设备将在目前任何可调谐激光系统都无法获得的短波长下产生前所未有的短脉冲。我们使用次谐波种子 FEL 来说明该概念。钛宝石激光器的辐射被三倍频并通过光学方法拉伸,为 FEL 提供相干种子脉冲。当耦合到磁场摆动器内的电子束时,种子辐射会在电子束上引入额外的能量调制,该电子束已准备好具有与光脉冲中的啁啾匹配的能量啁啾。然后,受调制的电子在色散磁体中被空间聚束,并引入到与种子激光的谐频共振的摆动器中,以提供额外的倍频。这些电子产生的相干辐射在通过摆动器时被放大并通过光学方法重新压缩。该方案提供的相位相干性的保持导致能够产生 4fs 脉冲,其在约 88nm 的中心波长处具有 0.3mJ 的能量,这很容易成为任何激光产生的最短持续时间的放大脉冲。在本文中,我们讨论了该概念的各个方面,包括短脉冲的产生、时间拉伸和压缩以及该设备的潜在应用。详细讨论了在宽带宽 FEL 放大过程中的相位失真,并表明在压缩时产生 4fs 脉冲的要求范围内。