Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Apartado Postal 663, C.P. 25000 Saltillo, Coahuila, México.
J Xray Sci Technol. 1996 Jan 1;6(1):1-31. doi: 10.3233/XST-1996-6101.
We report the effect that thermal annealing in inert and oxidizing atmospheres, and with and without encapsulating layers, has on the structure of tungsten/carbon [W/C] multilayer thin films. This study focuses on the tungsten component and deals mainly with multilayers where the ratio of thickness of tungsten layers is equal to or greater than for the carbon layers (that is, γ ≤ 0.5). This is in contrast to prior studies where the tungsten layer thickness was generally held constant and the carbon layer was varied. Thermal annealing in inert atmospheres produces reactions and other structural changes in the tungsten and carbide layers which depend on the as-deposited multilayer structure which depends, in turn, on the thickness of the tungsten layer. In samples where both the tungsten and carbide fractions of the multilayer are completely amorphous as deposited, which is the case for thin tungsten layers (thickness of tungsten (tw) < 4 nm/period), the reactions in the tungsten layer forming crystalline tungsten and tungsten carbide occur at annealing temperatures above 900°C. The layer pair spacing, or period, (d), in this group shows an expansion of up to 10-15% of the original value as has been reported in the past. Changes in both the tungsten and carbide layers, and their interfaces, contribute to changes in d spacing and relative thickness of the high and low Z components. When the tungsten layer thickness exceeds 4 nm per period the tungsten is partially crystallized in as-prepared samples. In such multilayers interfacial reactions, producing an oriented partially crystalline W2C/C superlattice, occur at temperatures of 600°C and below. The fact that W2C crystallites in one period can form a structure which is correlated to W2C crystallites in neighboring layers is somewhat surprising, since layers are presumably still separated by amorphous carbon which is still visible via Raman. The expansion of the layer pair spacing is relatively small (<5%) in this group and, more importantly, mostly involves increases in the thickness of the high Z components. Samples annealed in air at temperatures below 300°C are progressively destroyed by the oxidation of both tungsten and carbide layers. Encapsulation of similar multilayers with a thin (30 nm) dielectric layer of any of several types can retard oxidation to 600°C. The silicon-containing encapsulants generally perform better. Failure at this temperature is seen to occur from pinhole formation.
我们报告了在惰性和氧化气氛中退火,以及有和没有封装层的情况下,对钨/碳[W/C]多层薄膜结构的影响。本研究集中于钨部分,主要处理钨层厚度比碳层厚度相等或更大的多层(即 γ ≤ 0.5)。这与以前的研究形成对比,以前的研究通常保持钨层厚度不变,而改变碳层厚度。在惰性气氛中退火会导致钨和碳化物层中的反应和其他结构变化,这些反应取决于沉积的多层结构,而多层结构又取决于钨层的厚度。在沉积时钨和碳化物的多层完全非晶的情况下(沉积时钨的厚度(tw)<4nm/周期),形成结晶钨和碳化钨的钨层中的反应在 900°C 以上的退火温度下发生。层对间距(d)在这个组中显示出原始值的 10-15%的膨胀,这在过去已经有报道。钨和碳化物层及其界面的变化都导致了高 Z 和低 Z 成分的 d 间距和相对厚度的变化。当钨层厚度超过每个周期 4nm 时,在制备样品中钨部分结晶。在这种多层中,界面反应产生取向的部分结晶 W2C/C 超晶格,在 600°C 及以下的温度下发生。一个周期内的 W2C 晶核能够形成与相邻层中的 W2C 晶核相关的结构,这有点令人惊讶,因为层仍然被仍然可见的非晶碳隔开。在这个组中,层对间距的膨胀相对较小(<5%),更重要的是,主要涉及高 Z 成分的厚度增加。在低于 300°C 的温度下在空气中退火的样品逐渐被钨和碳化物层的氧化破坏。用几种类型的任何一种 30nm 厚的介电层封装类似的多层可以将氧化延迟到 600°C。含硅的封装剂通常表现更好。在这个温度下的失效被认为是由于形成微孔而发生的。