Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030, USA.
Cytoskeleton (Hoboken). 2011 Mar;68(3):175-87. doi: 10.1002/cm.20503.
Class VI β-tubulin (β6) is the most divergent tubulin produced in mammals and is found only in platelets and mature megakaryocytes. To determine how this unique tubulin isotype affects microtubule assembly and organization, we expressed the cDNA in tissue culture cells under the control of a tetracycline regulated promoter. The β6 coassembled with other endogenous β-tubulin isotypes into a normal microtubule array; but once the cells entered mitosis it caused extensive fragmentation of the microtubules, disrupted the formation of the spindle apparatus, and allowed entry into G1 phase without cytokinesis to produce large multinucleated cells. The microtubule fragments persisted into subsequent cell cycles and accumulated around the membrane in a marginal band-like appearance. The persistence of the fragments could be traced to a pronounced suppression of microtubule dynamic instability. Impairment of centrosomal nucleation also contributed to the loss of a normal microtubule cytoskeleton. Incorporation of β6 allowed microtubules to resist the effects of colcemid and maytansine, but not vinblastine or paclitaxel; however, cellular resistance to colcemid or maytansine did not occur because expression of β6 prevented cell division. The results indicate that many of the morphological features of megakaryocyte differentiation can be recapitulated in non-hematopoietic cells by β6 expression and they provide a mechanistic basis for understanding these changes.
VI 类β-微管蛋白(β6)是哺乳动物中最具差异性的微管蛋白,仅存在于血小板和成熟巨核细胞中。为了确定这种独特的微管蛋白同工型如何影响微管组装和组织,我们在组织培养细胞中,通过四环素调控的启动子控制,表达了 cDNA。β6 与其他内源性β-微管蛋白同工型共同组装成正常的微管阵列;但一旦细胞进入有丝分裂,它会导致微管广泛断裂,打乱纺锤体装置的形成,并在没有胞质分裂的情况下进入 G1 期,产生大的多核细胞。微管片段在随后的细胞周期中持续存在,并在细胞膜周围以边缘带样外观聚集。片段的持续存在可以追溯到微管动态不稳定性的明显抑制。中心体成核的损伤也导致正常微管细胞骨架的丧失。β6 的掺入允许微管抵抗秋水仙素和美坦辛的作用,但不能抵抗长春花碱或紫杉醇的作用;然而,细胞对秋水仙素或美坦辛的耐药性并没有发生,因为β6 的表达阻止了细胞分裂。研究结果表明,通过β6 的表达,可以在非造血细胞中再现巨核细胞分化的许多形态特征,为理解这些变化提供了机制基础。