Suppr超能文献

一种用于复杂几何形状中声波散射和低马赫数流动诱导声的高阶浸入边界方法。

A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries.

作者信息

Seo Jung Hee, Mittal Rajat

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218.

出版信息

J Comput Phys. 2011 Feb 20;230(4):1000-1019. doi: 10.1016/j.jcp.2010.10.017.

Abstract

A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.

摘要

描述了一种基于新的锐界面浸入边界法的方法,用于计算复杂几何形状周围的低马赫数流动诱导声。该基本方法基于一种流体动力学/声学分裂技术,其中首先使用二阶精确浸入边界求解器计算不可压缩流。随后使用线性化扰动可压缩方程(LPCE)计算声音。当前工作的主要贡献是开发了一种通用的、高阶精确的浸入边界法,用于在复杂域中求解LPCE。这种新方法通过将虚拟单元法与基于高阶近似多项式的加权最小二乘误差方法相结合,将浸入边界上的边界条件应用到高阶。该方法针对典型声波散射和流动诱导噪声问题进行了验证。还展示了该技术在相对复杂的实际感兴趣案例中的应用。

相似文献

2
A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
J Comput Phys. 2008;227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028.
5
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
6
The effect of wing flexibility on sound generation of flapping wings.
Bioinspir Biomim. 2017 Dec 13;13(1):016010. doi: 10.1088/1748-3190/aa8447.
7
A Computational Method for Analyzing the Biomechanics of Arterial Bruits.
J Biomech Eng. 2017 May 1;139(5). doi: 10.1115/1.4036262.
8
A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation.
Entropy (Basel). 2022 Nov 8;24(11):1622. doi: 10.3390/e24111622.
9
A novel interpolation-free sharp-interface immersed boundary method.
J Comput Phys. 2022 Mar 15;453. doi: 10.1016/j.jcp.2021.110933. Epub 2022 Jan 11.
10
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.

引用本文的文献

2
Origin and evolution of immersed boundary methods in computational fluid dynamics.
Phys Rev Fluids. 2023 Oct;8(10). doi: 10.1103/physrevfluids.8.100501. Epub 2023 Oct 6.
3
The Effects of Negative Pressure Induced by Flow Separation Vortices on Vocal Fold Dynamics during Voice Production.
Bioengineering (Basel). 2023 Oct 18;10(10):1215. doi: 10.3390/bioengineering10101215.
4
Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters.
Ind Eng Chem Res. 2018 Apr 4;57(13):4664-4679. doi: 10.1021/acs.iecr.8b00268. Epub 2018 Mar 15.
5
Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
Front Bioeng Biotechnol. 2017 Feb 13;5:7. doi: 10.3389/fbioe.2017.00007. eCollection 2017.
6
Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
Biomech Model Mechanobiol. 2015 Aug;14(4):719-33. doi: 10.1007/s10237-014-0632-2. Epub 2014 Nov 23.
8
A coupled flow-acoustic computational study of bruits from a modeled stenosed artery.
Med Biol Eng Comput. 2012 Oct;50(10):1025-35. doi: 10.1007/s11517-012-0917-5. Epub 2012 May 21.
9
Toward a simulation-based tool for the treatment of vocal fold paralysis.
Front Physiol. 2011 May 2;2:19. doi: 10.3389/fphys.2011.00019. eCollection 2011.

本文引用的文献

1
A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
J Comput Phys. 2008;227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028.
2
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.
3
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
4
Computer-based detection and analysis of heart sound and murmur.
Ann Biomed Eng. 2005 Jul;33(7):937-42. doi: 10.1007/s10439-005-4053-3.
5
Scattering of sound from axisymetric sources by multiple circular cylinders.
J Acoust Soc Am. 2004 Feb;115(2):488-96. doi: 10.1121/1.1641790.
6
Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2134-46. doi: 10.1121/1.1506693.
7
Auscultation of heart sounds.
Am J Nurs. 1972 Jul;72(7):1242-6.
8
Imaging the tongue and vocal tract.
Br J Disord Commun. 1991 Apr;26(1):11-23. doi: 10.3109/13682829109011990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验