Suppr超能文献

由丁基化羟基甲苯形成的交替醌甲基化物及其反应活性:物种特异性肺毒性的可能解释。

Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: possible explanation for species-specific pneumotoxicity.

作者信息

Bolton J L, Sevestre H, Ibe B O, Thompson J A

机构信息

Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado, Boulder 80309-0297.

出版信息

Chem Res Toxicol. 1990 Jan-Feb;3(1):65-70. doi: 10.1021/tx00013a011.

Abstract

Previous work has shown that butylated hydroxytoluene [2,6-di-tert-butyl-4-methylphenol (BHT)] undergoes pi-oxidation in liver microsomes to form the quinone methide 2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone (QM). This electrophilic species binds covalently to glutathione and protein thiols and is believed to initiate pulmonary toxicity in mice. In the present investigation, we identified another quinone methide metabolite of BHT, 6-tert-butyl-2-(hydroxy-tert-butyl)-4-methylene-2,5-cyclohexadienone (QM-OH), formed subsequent to the microsomal hydroxylation of BHT at a tert-butyl group. Mouse liver and lung microsomes generate the two quinone methides, and evidence was obtained that both metabolites also are formed in vivo. In contrast, rat microsomes produce QM almost exclusively, with only traces of QM-OH formed in liver and none in lung. Studies of the chemical reactivities of the two quinone methides with GSH demonstrated that QM-OH reacts about 6-fold faster than QM. Infrared spectra, 1H NMR spectra, and electrochemical measurements all support the proposal that the enhanced electrophilicity of QM-OH is due to intramolecular hydrogen bonding of the ring oxygen with the side-chain hydroxyl. The results provide evidence, therefore, that the previous metabolic scheme for bioactivation of BHT to a pulmonary toxin should be amended to include tert-butyl hydroxylation and subsequent pi-oxidation to the activated electrophile QM-OH. This scheme is consistent with published data concerning BHT-induced pulmonary toxicity and provides an explanation for the species specificity of this effect.

摘要

先前的研究表明,丁基化羟基甲苯[2,6 - 二叔丁基 - 4 - 甲基苯酚(BHT)]在肝微粒体中发生π-氧化,形成醌甲基化物2,6 - 二叔丁基 - 4 - 亚甲基 - 2,5 - 环己二烯酮(QM)。这种亲电物质与谷胱甘肽和蛋白质硫醇共价结合,被认为会引发小鼠的肺部毒性。在本研究中,我们鉴定出了BHT的另一种醌甲基化物代谢产物,6 - 叔丁基 - 2 -(羟基叔丁基)- 4 - 亚甲基 - 2,5 - 环己二烯酮(QM - OH),它是在BHT的叔丁基经微粒体羟基化后形成的。小鼠肝脏和肺微粒体会生成这两种醌甲基化物,并且有证据表明这两种代谢产物在体内也会形成。相比之下,大鼠微粒体几乎只产生QM,在肝脏中仅形成微量的QM - OH,而在肺中则没有。对这两种醌甲基化物与谷胱甘肽的化学反应性研究表明,QM - OH的反应速度比QM快约6倍。红外光谱、¹H NMR光谱和电化学测量均支持以下观点:QM - OH亲电性增强是由于环氧化合物与侧链羟基之间的分子内氢键作用。因此,这些结果提供了证据表明,之前将BHT生物活化成肺部毒素的代谢途径应修正为包括叔丁基羟基化以及随后氧化为活性亲电体QM - OH这一步骤。该途径与已发表的关于BHT诱导肺部毒性的数据一致,并为这种效应的物种特异性提供了解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验