Cardiovascular Science, National Heart and Lung Institute, Imperial College London, , Dovehouse Street, London SW36LY, UK.
J R Soc Interface. 2011 Jul 6;8(60):913-25. doi: 10.1098/rsif.2010.0597. Epub 2011 Feb 16.
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.
心血管疾病是复杂的病理学,包括完整组织、单细胞和亚细胞信号隔室中各种细胞功能的改变。研究这些过程的传统技术非常多样化,依赖于个别方法的组合,这些方法通常提供关于单个感兴趣参数的空间和时间有限的信息。本综述描述了扫描离子电导显微镜 (SICM) 作为一种新颖的多功能技术,能够在整个组织、单细胞和亚细胞水平的活心血管细胞中以纳米分辨率同时报告各种结构和功能参数,以研究心血管疾病的机制。SICM 是一种多模态成像技术,允许在纳米分辨率下对完整活心血管细胞和组织中膜形态和各种功能参数(细胞体积、膜电位、细胞收缩、单离子通道电流和一些细胞内信号参数)进行并发和动态分析在不同的组织水平(组织、细胞和亚细胞水平)。使用该技术,我们表明在组织水平上,主动脉弓内、外的细胞取向区分了易损区和保护区。在细胞水平上,心力衰竭导致心肌细胞中的 T 小管明显丢失,同时 Z 带比减小。我们还证明了 SICM 测量整个细胞体积作为细胞肥大指标的能力。该方法可以进一步与荧光结合使用,以同时测量心肌细胞收缩和细胞内钙瞬变,或绘制与环磷酸腺苷产生偶联的膜受体的亚细胞定位。SICM 管可用于膜电位和单通道电流的膜片钳记录。总之,SICM 为心血管疾病机制的功能分析提供了一个高度信息丰富的多模态成像平台,这应该有助于确定新的治疗策略。