Suppr超能文献

在体和离体大鼠心肌细胞肌节长度的测量与分析。

Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro.

机构信息

Department of Physiology Anatomy and Genetics, Universityof Oxford, Oxfordshire, UK.

出版信息

Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1616-25. doi: 10.1152/ajpheart.00481.2009. Epub 2010 Mar 12.

Abstract

Sarcomere length (SL) is an important determinant and indicator of cardiac mechanical function; however, techniques for measuring SL in living, intact tissue are limited. Here, we present a technique that uses two-photon microscopy to directly image striations of living cells in cardioplegic conditions, both in situ (Langendorff-perfused rat hearts and ventricular tissue slices, stained with the fluorescent marker di-4-ANEPPS) and in vitro (acutely isolated rat ventricular myocytes). Software was developed to extract SL from two-photon fluorescence image sets while accounting for measurement errors associated with motion artifact in raster-scanned images and uncertainty of the cell angle relative to the imaging plane. Monte-Carlo simulations were used to guide analysis of SL measurements by determining error bounds as a function of measurement path length. The mode of the distribution of SL measurements in resting Langendorff-perfused heart is 1.95 mum (n = 167 measurements from N = 11 hearts) after correction for tissue orientation, which was significantly greater than that in isolated cells (1.71 mum, n = 346, N = 9 isolations) or ventricular slice preparations (1.79 mum, n = 79, N = 3 hearts) under our experimental conditions. Furthermore, we find that edema in arrested Langendorff-perfused heart is associated with a mean SL increase; this occurs as a function of time ex vivo and correlates with tissue volume changes determined by magnetic resonance imaging. Our results highlight that the proposed method can be used to monitor SL in living cells and that different experimental models from the same species may display significantly different SL values under otherwise comparable conditions, which has implications for experiment design, as well as comparison and interpretation of data.

摘要

肌节长度(SL)是心脏机械功能的重要决定因素和指标;然而,用于测量活组织中 SL 的技术是有限的。在这里,我们提出了一种使用双光子显微镜直接在心脏停搏条件下对活细胞的条纹进行成像的技术,包括在原位(Langendorff 灌注的大鼠心脏和用荧光标记物 di-4-ANEPPS 染色的心室组织切片)和体外(急性分离的大鼠心室肌细胞)。开发了一种软件,用于从双光子荧光图像集中提取 SL,同时考虑到光栅扫描图像中运动伪影相关的测量误差以及细胞角度相对于成像平面的不确定性。通过确定测量路径长度的函数作为误差边界,蒙特卡罗模拟用于指导 SL 测量的分析。在纠正组织方向后,休息状态下 Langendorff 灌注心脏的 SL 测量分布模式的模式为 1.95 µm(n = 11 只心脏中的 167 次测量),明显大于分离细胞(1.71 µm,n = 346,N = 9 个分离)或心室切片制剂(1.79 µm,n = 79,N = 3 只心脏)。此外,我们发现,在停搏的 Langendorff 灌注心脏中,水肿与平均 SL 增加有关;这种情况在离体时随时间发生,并与磁共振成像确定的组织体积变化相关。我们的结果表明,所提出的方法可用于监测活细胞中的 SL,并且来自同一物种的不同实验模型在其他可比条件下可能显示出明显不同的 SL 值,这对实验设计以及数据的比较和解释具有重要意义。

相似文献

1
Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro.
Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1616-25. doi: 10.1152/ajpheart.00481.2009. Epub 2010 Mar 12.
2
Fast measurement of sarcomere length and cell orientation in Langendorff-perfused hearts using remote focusing microscopy.
Circ Res. 2013 Sep 13;113(7):863-70. doi: 10.1161/CIRCRESAHA.113.301704. Epub 2013 Jul 30.
3
Real-time measurement of the length of a single sarcomere in rat ventricular myocytes: a novel analysis with quantum dots.
Am J Physiol Cell Physiol. 2011 Nov;301(5):C1116-27. doi: 10.1152/ajpcell.00161.2011. Epub 2011 Aug 3.
4
Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes.
Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R20-9. doi: 10.1152/ajpregu.00537.2006. Epub 2006 Nov 16.
5
Titin determines the Frank-Starling relation in early diastole.
J Gen Physiol. 2003 Feb;121(2):97-110. doi: 10.1085/jgp.20028652.
6
Real-time determination of sarcomere length of a single cardiomyocyte during contraction.
Am J Physiol Cell Physiol. 2013 Mar;304(6):C519-31. doi: 10.1152/ajpcell.00032.2012. Epub 2012 Dec 19.
7
Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae.
Biophys J. 2007 May 1;92(9):L73-5. doi: 10.1529/biophysj.107.104257. Epub 2007 Feb 9.
8
Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213289. Epub 2023 Jan 25.
10
Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae.
Am J Physiol. 1997 Apr;272(4 Pt 2):H1892-7. doi: 10.1152/ajpheart.1997.272.4.H1892.

引用本文的文献

2
A novel method to extend viability and functionality of living heart slices.
Front Cardiovasc Med. 2023 Oct 10;10:1244630. doi: 10.3389/fcvm.2023.1244630. eCollection 2023.
3
Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213289. Epub 2023 Jan 25.
4
Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging.
Front Bioeng Biotechnol. 2022 Aug 16;10:935415. doi: 10.3389/fbioe.2022.935415. eCollection 2022.
5
Sarcomere length in the beating heart: Synchronicity is optional.
J Gen Physiol. 2022 Feb 7;154(2). doi: 10.1085/jgp.202113022. Epub 2022 Jan 10.
6
Quantification of Myocyte Disarray in Human Cardiac Tissue.
Front Physiol. 2021 Nov 16;12:750364. doi: 10.3389/fphys.2021.750364. eCollection 2021.
7
Synchrony of sarcomeric movement regulates left ventricular pump function in the in vivo beating mouse heart.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.202012860. Epub 2021 Oct 4.
8
Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds.
Front Immunol. 2019 Nov 26;10:2782. doi: 10.3389/fimmu.2019.02782. eCollection 2019.
9
Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth.
J Anat. 2019 Nov;235(5):962-976. doi: 10.1111/joa.13058. Epub 2019 Jul 26.
10
Stimulation of TRPA1 attenuates ischemia-induced cardiomyocyte cell death through an eNOS-mediated mechanism.
Channels (Austin). 2019 Dec;13(1):192-206. doi: 10.1080/19336950.2019.1623591.

本文引用的文献

1
Tissue slices from adult mammalian hearts as a model for pharmacological drug testing.
Cell Physiol Biochem. 2009;24(5-6):527-36. doi: 10.1159/000257528. Epub 2009 Nov 4.
2
Myocardial tissue slices: organotypic pseudo-2D models for cardiac research & development.
Future Cardiol. 2009 Sep;5(5):425-30. doi: 10.2217/fca.09.32.
3
Generation of histo-anatomically representative models of the individual heart: tools and application.
Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2257-92. doi: 10.1098/rsta.2009.0056.
4
Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate.
Circ Res. 2009 Mar 27;104(6):787-95. doi: 10.1161/CIRCRESAHA.108.193334. Epub 2009 Feb 5.
5
Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart.
Circ Res. 2009 Mar 13;104(5):639-49. doi: 10.1161/CIRCRESAHA.108.181909. Epub 2009 Jan 15.
7
Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans.
Nature. 2008 Aug 7;454(7205):784-8. doi: 10.1038/nature07104. Epub 2008 Jul 6.
8
Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):298-311. doi: 10.1016/j.pbiomolbio.2008.02.012. Epub 2008 Feb 15.
9
Utility library for structural bioinformatics.
Bioinformatics. 2008 Feb 15;24(4):584-5. doi: 10.1093/bioinformatics/btm627. Epub 2008 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验