Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
Nucleus. 2010 Jan-Feb;1(1):4-7. doi: 10.4161/nucl.1.1.10010.
Eukaryotic genomes are organized into chromosomes. In order to maintain genomic stability during cell proliferation, a series of elaborate processes is employed to ensure that chromosomes are duplicated and segregated equally into daughter cells. Sister chromatid cohesion, a tight association of duplicated sister chromatids, allows their attachment to the opposite centrosomes. Sister chromatid cohesion depends on the cohesin complex, a proteinaceous ring that entraps the chromatids together. At the metaphase-to-anaphase transition, a protease called separase is activated and completely dissolves the cohesion by cleaving SCC1, a subunit of the cohesin complex. As one of the key executors of anaphase, separase is regulated temporally and spatially by often redundant mechanisms. A recent study revealed that chromosomal DNA is required as a cofactor for the cleavage of cohesin to occur. This DNA dependence is the underlying biochemical mechanism that allows separase to selectively cleave only the chromosome-associated cohesin. We propose that the chromosomal DNA dependent cohesin cleavage by separase is a component of a regulatory pathway that cells utilize to protect the bulk of cohesin. This intact cohesin becomes immediately available in G(1) to resume its other function-regulation of gene transcription by means of chromatin insulation.
真核生物的基因组组织成染色体。为了在细胞增殖过程中维持基因组的稳定性,一系列精细的过程被用来确保染色体被复制并平均分配到子细胞中。姐妹染色单体的黏合,即复制后的姐妹染色单体之间的紧密联系,使它们附着在相对的中心体上。姐妹染色单体的黏合依赖于黏合蛋白复合物,这是一种将染色单体束缚在一起的蛋白质环。在中期到后期的转变中,一种叫做分离酶的蛋白酶被激活,并通过切割黏合蛋白复合物的一个亚基 SCC1 来完全破坏黏合。作为后期的关键执行者之一,分离酶受到时空上的冗余机制的调节。最近的一项研究表明,染色体 DNA 作为黏合蛋白切割的辅助因子是必需的。这种 DNA 依赖性是分离酶能够选择性地仅切割与染色体相关的黏合蛋白的基础生化机制。我们提出,分离酶对依赖染色体的黏合蛋白的切割是细胞用来保护大部分黏合蛋白的调控途径的一个组成部分。这种完整的黏合蛋白在 G1 期立即可用,以恢复其通过染色质隔离来调节基因转录的其他功能。