L&T Microbiology Research Centre, Vision Research Foundation, 18 College Road, Chennai 600006, India.
Int J Antimicrob Agents. 2011 Apr;37(4):368-72. doi: 10.1016/j.ijantimicag.2010.11.023. Epub 2011 Feb 16.
This study reports on the structural basis of drug resistance targeting the katG gene in a multidrug-resistant Mycobacterium tuberculosis (MDR-TB) strain with two novel mutations (His276Met and Gln295His) in addition to the most commonly reported mutation (Ser315Thr). A structural bioinformatics approach was used to predict the structure of the mutant KatG enzyme (MT). Subsequent molecular dynamics and docking studies were performed to explain the mechanism of isoniazid (INH) resistance. The results show significant conformational changes in the structure of MT leading to a change in INH binding residues at the active site, with a significant increase in the inhibition constant (Ki) of 5.67 μm in the mutant KatG-isoniazid complex (MT-INH) compared with the wild-type KatG-isoniazid complex (WT-INH). In the case of molecular dynamics studies, root mean square deviation (RMSD) analysis of the protein backbone in simulated biological conditions revealed an unstable trajectory with higher deviations in MT throughout the simulation process (1 ns). Moreover, root mean square fluctuation (RMSF) analysis revealed an overall increase in residual fluctuations in MT compared with the wild-type KatG enzyme (WT), whilst the INH binding residues of MT showed a decreased fluctuation that can be observed as peak deviations. Hence, the present study suggests that His276Met, Gln295His and Ser315Thr mutations targeting the katG gene result in decreased stability and flexibility of the protein at INH binding residues leading to impaired enzyme function.
本研究报告了一种耐多药结核分枝杆菌(MDR-TB)菌株中 katG 基因的结构基础,该菌株除了最常见的突变(Ser315Thr)外,还存在两个新的突变(His276Met 和 Gln295His)。采用结构生物信息学方法预测了突变型 KatG 酶(MT)的结构。随后进行了分子动力学和对接研究,以解释异烟肼(INH)耐药的机制。结果表明,MT 的结构发生了显著的构象变化,导致活性部位的 INH 结合残基发生变化,与野生型 KatG-异烟肼复合物(WT-INH)相比,突变型 KatG-异烟肼复合物(MT-INH)的抑制常数(Ki)显著增加了 5.67 μm。在分子动力学研究中,在模拟的生物条件下对蛋白质骨架的均方根偏差(RMSD)分析表明,在整个模拟过程中,MT 的轨迹不稳定,偏差较大(1 ns)。此外,均方根波动(RMSF)分析显示,与野生型 KatG 酶(WT)相比,MT 的整体残基波动增加,而 MT 的 INH 结合残基的波动减小,可以观察到峰偏差。因此,本研究表明,针对 katG 基因的 His276Met、Gln295His 和 Ser315Thr 突变导致 INH 结合残基处的蛋白质稳定性和灵活性降低,从而损害酶的功能。