División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, 86690 México, TAB, Mexico.
Comput Math Methods Med. 2011;2011:325470. doi: 10.1155/2011/325470. Epub 2011 Feb 6.
The mathematical model for the dynamics of the hepatitis C proposed in Avendaño et al. (2002), with four populations (healthy and unhealthy hepatocytes, the viral load of the hepatitis C virus, and T killer cells), is revised. Showing that the reduced model obtained by considering only the first three of these populations, known as basic model, has two possible equilibrium states: the uninfected one where viruses are not present in the individual, and the endemic one where viruses and infected cells are present. A threshold parameter (the basic reproductive virus number) is introduced, and in terms of it, the global stability of both two possible equilibrium states is established. Other central result consists in showing, by model numerical simulations, the feasibility of monitoring liver damage caused by HCV, avoiding unnecessary biopsies and the undesirable related inconveniences/imponderables to the patient; another result gives a mathematical modelling basis to recently developed techniques for the disease assessment based essentially on viral load measurements.
Avendaño 等人提出的丙型肝炎动力学数学模型(2002),包含四个群体(健康和不健康的肝细胞、丙型肝炎病毒的病毒载量和 T 杀伤细胞),对此进行了修订。结果表明,通过仅考虑其中前三个群体得到的简化模型,即基本模型,有两个可能的平衡状态:未感染状态,个体中不存在病毒;流行状态,存在病毒和感染细胞。引入一个阈值参数(基本繁殖病毒数),并根据该参数,确定了这两个可能的平衡状态的全局稳定性。另一个重要结果是通过模型数值模拟表明,对 HCV 引起的肝损伤进行监测是可行的,可以避免不必要的活检,以及避免对患者造成的不良相关不便/不可预测性;另一个结果为基于病毒载量测量的疾病评估的新技术提供了数学建模基础。