Unit of Functional Bionanomaterials, School of Biosciences, University of Birmingham Edgbaston, Birmingham B15 2TT, UK.
Biotechnol Lett. 2011 May;33(5):969-76. doi: 10.1007/s10529-011-0532-9. Epub 2011 Feb 18.
Palladium bionanomaterial was manufactured using the sulfate-reducing bacterium, Desulfovibrio desulfuricansm, to reduce soluble Pd(II) ions to cell-bound Pd(0) in the presence of hydrogen. The biomaterial was examined using a Superconducting Quantum Interference Device (SQUID) to measure bulk magnetisation and by Muon Spin Rotation Spectroscopy (µSR) which is uniquely able to probe the local magnetic environment inside the sample. Results showed behaviour attributable to interaction of muons both with palladium electrons and the nuclei of hydrogen trapped in the particles during manufacture. Electronic magnetism, also suggested by SQUID, is not characteristic of bulk palladium and is consistent with the presence of nanoparticles previously seen in electron micrographs. We show the first use of μSR as a tool to probe the internal magnetic environment of a biologically-derived nanocatalyst material.
钯生物纳米材料是利用硫酸盐还原菌脱硫弧菌在氢气存在的条件下将可溶性 Pd(II) 离子还原为细胞结合的 Pd(0) 来制备的。使用超导量子干涉装置 (SQUID) 对生物材料进行了检查,以测量整体磁化强度,并使用μ子自旋旋转光谱 (µSR) 进行了检查,µSR 能够独特地探测样品内部的局部磁环境。结果表明,μ子与钯电子以及在制造过程中被困在颗粒中的氢核之间的相互作用是可以归因的。SQUID 也表明了电子磁性,但它不是块状钯的特征,与电子显微镜图像中先前看到的纳米颗粒的存在一致。我们展示了首次使用 µSR 作为工具来探测生物衍生纳米催化剂材料的内部磁环境。