Suppr超能文献

翻译起始因子 eIF5B 中 α-螺旋 H12 的结构完整性对于 80S 复合物的稳定性至关重要。

Structural integrity of {alpha}-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability.

机构信息

Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

RNA. 2011 Apr;17(4):687-96. doi: 10.1261/rna.2412511. Epub 2011 Feb 18.

Abstract

Translation initiation factor eIF5B promotes GTP-dependent ribosomal subunit joining in the final step of the translation initiation pathway. The protein resembles a chalice with the α-helix H12 forming the stem connecting the GTP-binding domain cup to the domain IV base. Helix H12 has been proposed to function as a rigid lever arm governing domain IV movements in response to nucleotide binding and as a molecular ruler fixing the distance between domain IV and the G domain of the factor. To investigate its function, helix H12 was lengthened or shortened by one or two turns. In addition, six consecutive residues in the helix were substituted by Gly to alter the helical rigidity. Whereas the mutations had minimal impacts on the factor's binding to the ribosome and its GTP binding and hydrolysis activities, shortening the helix by six residues impaired the rate of subunit joining in vitro and both this mutation and the Gly substitution mutation lowered the yield of Met-tRNA(i)(Met) bound to 80S complexes formed in the presence of nonhydrolyzable GTP. Thus, these two mutations, which impair yeast cell growth and enhance ribosome leaky scanning in vivo, impair the rate of formation and stability of the 80S product of subunit joining. These data support the notion that helix H12 functions as a ruler connecting the GTPase center of the ribosome to the P site where Met-tRNA(i)(Met) is bound and that helix H12 rigidity is required to stabilize Met-tRNA(i)(Met) binding.

摘要

翻译起始因子 eIF5B 促进翻译起始途径的最后一步中 GTP 依赖性核糖体亚基的连接。该蛋白类似于一个圣杯,α 螺旋 H12 形成连接 GTP 结合域杯和域 IV 基底部的茎。H12 螺旋被提议作为一种刚性杠杆臂,控制域 IV 的运动以响应核苷酸结合,并作为一种分子标尺,固定域 IV 和因子的 G 域之间的距离。为了研究其功能,H12 螺旋被延长或缩短一个或两个螺旋。此外,该螺旋中的六个连续残基被 Gly 取代,以改变螺旋的刚性。虽然这些突变对因子与核糖体的结合及其 GTP 结合和水解活性的影响很小,但将螺旋缩短六个残基会损害体外亚基连接的速率,并且这种突变和 Gly 取代突变降低了 Met-tRNA(i)(Met)与 80S 复合物的结合产量在非水解 GTP 存在下形成。因此,这两种突变既会损害酵母细胞的生长,又会增强体内核糖体漏扫描,从而损害亚基连接的 80S 产物的形成和稳定性。这些数据支持这样一种观点,即 H12 螺旋作为一种连接核糖体 GTPase 中心与 P 位的标尺,Met-tRNA(i)(Met)结合在 P 位上,并且 H12 螺旋的刚性是稳定 Met-tRNA(i)(Met)结合所必需的。

相似文献

2
Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining.
Mol Cell Biol. 2007 Mar;27(6):2384-97. doi: 10.1128/MCB.02254-06. Epub 2007 Jan 22.
3
Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining.
J Biol Chem. 2006 Mar 31;281(13):8469-75. doi: 10.1074/jbc.M600210200. Epub 2006 Feb 3.
7
8
Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16689-94. doi: 10.1073/pnas.262569399. Epub 2002 Dec 6.
9
Translation initiation factor 2gamma mutant alters start codon selection independent of Met-tRNA binding.
Mol Cell Biol. 2008 Nov;28(22):6877-88. doi: 10.1128/MCB.01147-08. Epub 2008 Sep 15.

引用本文的文献

1
Role of aIF5B in archaeal translation initiation.
Nucleic Acids Res. 2022 Jun 24;50(11):6532-6548. doi: 10.1093/nar/gkac490.
2
Established and Emerging Regulatory Roles of Eukaryotic Translation Initiation Factor 5B (eIF5B).
Front Genet. 2021 Aug 27;12:737433. doi: 10.3389/fgene.2021.737433. eCollection 2021.
3
Recent Advances in Archaeal Translation Initiation.
Front Microbiol. 2020 Sep 18;11:584152. doi: 10.3389/fmicb.2020.584152. eCollection 2020.
4
5
Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1429-1437. doi: 10.1073/pnas.1916436117. Epub 2020 Jan 3.
6
eIF5B gates the transition from translation initiation to elongation.
Nature. 2019 Sep;573(7775):605-608. doi: 10.1038/s41586-019-1561-0. Epub 2019 Sep 18.
7
eIF5B increases ASAP1 expression to promote HCC proliferation and invasion.
Oncotarget. 2016 Sep 20;7(38):62327-62339. doi: 10.18632/oncotarget.11469.
8
Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4315-22. doi: 10.1073/pnas.1320477111. Epub 2014 Sep 26.
9
eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning.
Nucleic Acids Res. 2014 Oct 29;42(19):12052-69. doi: 10.1093/nar/gku877. Epub 2014 Sep 26.
10
Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA.
Nat Struct Mol Biol. 2014 Aug;21(8):721-7. doi: 10.1038/nsmb.2859. Epub 2014 Jul 27.

本文引用的文献

1
Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
Cell. 2009 Feb 20;136(4):731-45. doi: 10.1016/j.cell.2009.01.042.
3
Kinetic analysis of late steps of eukaryotic translation initiation.
J Mol Biol. 2009 Jan 16;385(2):491-506. doi: 10.1016/j.jmb.2008.10.029. Epub 2008 Oct 19.
4
Structure of the 30S translation initiation complex.
Nature. 2008 Sep 18;455(7211):416-20. doi: 10.1038/nature07192. Epub 2008 Aug 31.
5
Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2.
Nat Struct Mol Biol. 2008 Aug;15(8):836-41. doi: 10.1038/nsmb.1445. Epub 2008 Jul 6.
6
eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
EMBO J. 2008 Apr 9;27(7):1060-72. doi: 10.1038/emboj.2008.49. Epub 2008 Mar 13.
7
Molecular genetic structure-function analysis of translation initiation factor eIF5B.
Methods Enzymol. 2007;429:185-201. doi: 10.1016/S0076-6879(07)29009-3.
8
Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing.
EMBO J. 2007 Jul 11;26(13):3109-23. doi: 10.1038/sj.emboj.7601751. Epub 2007 Jun 14.
9
Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining.
Mol Cell Biol. 2007 Mar;27(6):2384-97. doi: 10.1128/MCB.02254-06. Epub 2007 Jan 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验