Schmitt Emmanuelle, Coureux Pierre-Damien, Kazan Ramy, Bourgeois Gabrielle, Lazennec-Schurdevin Christine, Mechulam Yves
Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France.
Front Microbiol. 2020 Sep 18;11:584152. doi: 10.3389/fmicb.2020.584152. eCollection 2020.
Translation initiation (TI) allows accurate selection of the initiation codon on a messenger RNA (mRNA) and defines the reading frame. In all domains of life, translation initiation generally occurs within a macromolecular complex made up of the small ribosomal subunit, the mRNA, a specialized methionylated initiator tRNA, and translation initiation factors (IFs). Once the start codon is selected at the P site of the ribosome and the large subunit is associated, the IFs are released and a ribosome competent for elongation is formed. However, even if the general principles are the same in the three domains of life, the molecular mechanisms are different in bacteria, eukaryotes, and archaea and may also vary depending on the mRNA. Because TI mechanisms have evolved lately, their studies bring important information about the evolutionary relationships between extant organisms. In this context, recent structural data on ribosomal complexes and genome-wide studies are particularly valuable. This review focuses on archaeal translation initiation highlighting its relationships with either the eukaryotic or the bacterial world. Eukaryotic features of the archaeal small ribosomal subunit are presented. Ribosome evolution and TI mechanisms diversity in archaeal branches are discussed. Next, the use of leaderless mRNAs and that of leadered mRNAs having Shine-Dalgarno sequences is analyzed. Finally, the current knowledge on TI mechanisms of SD-leadered and leaderless mRNAs is detailed.
翻译起始(TI)可在信使核糖核酸(mRNA)上精确选择起始密码子并确定阅读框。在所有生命域中,翻译起始通常发生在由小核糖体亚基、mRNA、一种特殊的甲硫氨酸化起始tRNA和翻译起始因子(IFs)组成的大分子复合物内。一旦在核糖体的P位点选择了起始密码子且大亚基与之结合,IFs就会被释放,从而形成一个能够进行延伸的核糖体。然而,尽管生命的三个域中的一般原理相同,但细菌、真核生物和古细菌中的分子机制却有所不同,并且可能还会因mRNA的不同而有所变化。由于翻译起始机制是最近才进化出来的,对它们的研究带来了有关现存生物之间进化关系的重要信息。在这种背景下,核糖体复合物的最新结构数据和全基因组研究尤其有价值。本综述聚焦于古细菌的翻译起始,突出其与真核生物或细菌界的关系。介绍了古细菌小核糖体亚基的真核生物特征。讨论了古细菌分支中的核糖体进化和翻译起始机制多样性。接下来,分析了无帽mRNA和具有Shine-Dalgarno序列的有帽mRNA的使用情况。最后,详细阐述了目前关于有Shine-Dalgarno序列的有帽mRNA和无帽mRNA的翻译起始机制的知识。